跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/24 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李芯如
研究生(外文):Hsin-Ru Li
論文名稱:以事件相關電位探討終止信號作業反應抑制歷程的特性
論文名稱(外文):Inhibitory Motor Control in the Stop-signal Task
指導教授:郭文瑞郭文瑞引用關係
指導教授(外文):Wen-Jui Kuo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:110
中文關鍵詞:終止信號作業動作抑制事件相關電位頻率動機
外文關鍵詞:Stop-signal taskmotor inhibitoryERPprobabilitymotivation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:3
從Logan等人(1984)發展競爭理論解釋終止信號作業下的動作抑制歷程,並估計抑制歷程運作所需的時間(SSRT),發現SSRT很難受到實驗操弄影響(Logan, 1994),ERP結果中反映抑制運作的P3成份卻會受到動作抑制困難度的改變,終止信號頻率愈低則動作愈難停止,此時P3起伏程度愈大(Ramautar, Kok, & Ridderinkhof, 2004),雖然Dimoska等人(2007)認為P3成分的變化反映終止信號頻率的改變,但仍無法推翻P3的振幅大小可能反映動作抑制的困難度。

本研究針對抑制歷程的穩定性進行討論,探討情境因素和個體狀態與動作抑制之間的關係,嘗試釐清行為表現與反映動作抑制歷程的ERP成分的關係。實驗一至實驗四探究情境因素與抑制歷程的關係。實驗一重複Logan(1984)的實驗,操弄作業困難度,以此學習計算SSRT並確認其穩定性。實驗二重複部分Logan和Burkell(1986)的實驗,比較不同終止信號頻率(20%、50%和80%)與SSRT的關係,發現頻率水準差異過大會偏移受試者的反應速度,導致SSRT有較大的變異性。實驗三到實驗五結合ERP技術檢驗抑制歷程在生理層次上的運作情形。由於實驗二結果與預期不符,實驗三縮小終止信號頻率水準為20%、40%和60%,再次檢驗SSRT與終止信號頻率的關係。實驗三的行為結果符合競爭理論的預期,ERP結果發現終止信號會誘發N2/P3複合成分,並依不同反應類型展現不同的特性。但是終止信號出現愈頻繁其誘發的N2愈大,與已知的N2特性不符。因此實驗四繼續縮小頻率水準為20%、30%和40%,利用動態調整終止信號出現時間的方式確認ERP效果。實驗四的ERP結果較符合以往文獻發現,失敗抑制下的N2及P3較大;終止信號頻率愈彽誘發的ERP起伏較明顯。實驗五檢驗個體狀態與動作抑制的關係,以真實生活中的現金誘惑提升受試者對反應執行的動機強度,促進參與者處理動作執行與終止的效率。結果發現動機強度不會改變SSRT,對ERP中的P3成份也沒有影響,只有失敗抑制下的N2會隨動機強度改變。

綜合本研究的五個實驗,發現抑制歷程的運作相當穩定,不易因個體狀態及外在情境影響。在ERP結果上,終止信號誘發的N2及P3在不同反應下明顯不同:成功抑制下的N2不受實驗操弄改變,抑制失敗的N2隨作業中的衝突程度有同向的變化,推測N2扮演監控反應目標執行的角色。P3在成功抑制下反映抑制歷程的運作,其表現出的穩定性與SSRT相似。
In a stop-signal task, the subjects are given a primary task to perform with and, on occasion, a stop-signal is presented to stop the action initiated. A race model was proposed to estimate the time necessary for processing the stop-signal (i.e. the SSRT) and to account for the processes. For over 20 years, behavioral data in the stop-signal task have been modeled successfully in terms of a race between two independent processes that respond to the stop-signal and the Go-target.

In Experiment 1, we compared the SSRTs of simple and choice task, and found that the SSRTs of the tasks do differ from each other. In Experiment 2, we investigated whether the response bias could influence the stop processes when occurrence probability of stop-signal varies. We manipulated stop-signal occurence to be 20%, 50%, and 80%, and found that the SSRT decreased when stop-signal occurence increased. Our interpretation is that there might be a top-down influence to the processing of stop-signal. To confirm this, we reduced difference between various probability levels (20%, 40%, and 60%) in the experiment 3. Concurrently, we recorded ERP for more closely inspecting its evolution in temporal aspect. The RT data reversed our previous results. For ERP analysis, by subtracting ERP trace of the Go-only trials from those with stop-signal, the successful-stopping trials (SSTs) elicited a fronto-central positive effect whereas unsuccessful-stopping trials (USSTs) evoked a centro-parietal positive effect. The positive effect peaked later in the USSTs than in the SSTs. More specific, we found an N2-like component occurring only in the USST difference waveform, which behaved more actively in the 60% condition. For avoiding the subjects’ strategy, the probability of stop-signal occurrence is usually less than 50%. In Experiment 4, we modified probability levels to 20%, 30%, and 40%, and used a tracking method to adjust the time of stop-signal occurrences. The behavioral results are line up with previous studies using stop-signal paradigm-the SSRTs are not significant in different probability levels. And the ERP results are replicated the previous experiment. It confirmed that the probability could modify the N2 effect in USST.

On the other side, we explored whether the motivation of subject could influence the inhibition processes. In Experiment 5, we used a typical stop-signal paradigm and the tracking method in both condition-neutral and motivational. In the behavioral data, there is no difference from each other. The ERP results show the obvious N2 effect in USST that reflected the stronger processing of monitoring.

Together these fndings indicate that the successful-stop P3 reflect functionally distinct aspects of response control, while stop N2 reflect the monitoring processing.
中文摘要 I
英文摘要 III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XI
第一章 研究背景 1
1.1抑制的定義 1
1.1.1 認知抑制 2
1.1.2 情緒抑制 4
1.1.3 動作抑制 4
1.2 終止信號作業 5
1.3 競爭理論 7
1.3.1 獨立假設成立的可能性 13
1.3.2 抑制歷程在手動與眼動的差異 16
1.3.3 動作抑制歷程的延遲效果 17
1.4 動作抑制的事件相關電位研究 18
1.4.1 N2/P3複合物 18
1.4.2 成功與失敗抑制在ERP上的差異 19
1.4.3 終止信號的頻率效果 21
1.4.4 動作準備誘發的側邊準備電位 23
1.5 小結 25
第二章 研究目的與方法 27
2.1 研究目的 27
2.2受試者 29
2.3 腦電波紀錄及實驗參數設定 29
2.4 腦電波結果的分析邏輯 29
2.4.1 由主要作業目標項引起的ERP 30
2.4.2 由終止信號引起的ERP 31
2.4.3 反應鎖定的ERP 31
2.5腦電波資料分析程序 31
2.5.1 LRP計算方式 32
第三章 實驗一 (行為實驗) 34
3.1 介紹 34
3.2 實驗方法 34
3.3 實驗結果 37
3.4 討論 40
第四章 實驗二 (行為實驗) 42
4.1 介紹 42
4.2 實驗方法 42
4.3 實驗結果 44
4.4 討論 46
第五章 實驗三 (行為及ERP實驗) 48
5.1 前言 48
5.2 實驗方法 48
5.3 實驗結果 51
5.3.1 行為實驗 51
5.3.2 ERP實驗的行為結果 53
5.3.3 ERP結果 54
5.4 討論 60
第六章 實驗四 (行為及ERP實驗) 63
6.1 介紹 63
6.2 實驗方法 64
6.3 實驗結果 65
6.3.1 行為實驗 65
6.3.2 ERP實驗的行為結果 66
6.3.3 ERP結果 67
6.4 討論 74
第七章 實驗一至實驗四綜合討論 76
7.1 行為結果比較 76
7.2 ERP結果比較 77
7.2.1 反應差異 77
7.2.2 頻率效果 78
第八章 實驗五 (行為及ERP實驗) 80
8.1 介紹 80
8.2 實驗方法 81
8.3 實驗結果 85
8.3.1 行為實驗 85
8.3.2 ERP實驗行為結果 86
8.3.3 ERP結果 87
8.4 討論 93
第九章 綜合討論 95
9.1 行為表現 95
9.2 ERP結果 98
9.3 結論 102
參考文獻 104
附錄:64顆電極分布圖 110
Abrams, R. A., Meyer, D. E., & Kornblum, S. (1990). Eye-hand coordination: oculomotor control in rapid aimed limb movements. J Exp Psychol, 16, 248-267.
Band, G. P. H., & van Boxtel, G. J. M. (1999). Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanisms. Acta Psychologica, 101(2-3), 179-211.
Band, G. P. H., Van Der Molen, M. W., & Logan, G. D. (2003). Horse-race model simulations of the stop-signal procedure. Acta Psychologica, 112(2), 105-142.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. PSYCHOLOGICAL REVIEW-NEW YORK-, 108(3), 624-652.
Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2007). Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol Rev, 114(2), 376-397.
Boucher, L., Stuphorn, V., Logan, G. D., Schall, J. D., & Palmeri, J. T. (2006). Independent Stopping of Eye and Hand Movements. Perception and Psychophysics.
Coles, M. G. H. (1989). Modern mind-brain reading: Psychophysiology, physiology, and cognition. Psychophysiology, 26(3), 251-269.
De Jong, R., Coles, M. G. H., Logan, D. G., & Gratton, G. (1990). In search of the point of no return: The control of response processes. Journal of Experimental Psychology, 16(1), 164-182.
De Jong, R., Coles, M. G. H., & Logan, G. D. (1995). Strategies and mechanisms in nonselective and selective inhibitory motor control. JOURNAL OF EXPERIMENTAL PSYCHOLOGY HUMAN PERCEPTION AND PERFORMANCE, 21, 498-498.
Dillon, D. G., & Pizzagalli, D. A. (2007). Inhibition of action, thought, and emotion: a selective neurobiological review. Applied and Preventive Psychology, 12(3), 99-114.
Dimoska, A., & Johnstone, S. J. (2007). Effects of varying stop-signal probability on ERPs in the stop-signal task: Do they reflect variations in inhibitory processing or simply novelty effects? Biological Psychology.
Dimoska, A., Johnstone, S. J., & Barry, R. J. (2006). The auditory-evoked N2 and P3 components in the stop-signal task: Indices of inhibition, response-conflict or error-detection? Brain and Cognition, 62(2), 98-112.
Dimoska, A., Johnstone, S. J., Barry, R. J., & Clarke, A. R. (2003). Inhibitory motor control in children with attention-deficit/hyperactivity disorder: Event-related potentials in the stop-signal paradigm. Biological Psychiatry, 54(12), 1345-1354.
Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and clinical Neurophysiology, 78(6), 447.
Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45(1), 152.
Gribble, P. L., Everling, S., Ford, K., & Mattar, A. (2002). Hand-eye coordination for rapid pointing movements. Experimental Brain Research, 145(3), 372-382.
Jodo, E., & Kayama, Y. (1992). Relation of a negative ERP component to response inhibition in a Go/No-go task. Electroencephalography and Clinical Neurophysiology, 82(6), 477.
Kok, A. (1986). Effects of degradation of visual stimuli on components of the event-related potential(ERP) in go/nogo reaction tasks. Biological Psychology, 23(1), 21-38.
Kok, A., Ramautar, J. R., De Ruiter, M. B., Band, G. P. H., & Ridderinkhof, K. R. (2004). ERP components associated with successful and unsuccessful stopping in a stop-signal task. Psychophysiology, 41(1), 9-20.
Kramer, A. F., Humphrey, D. G., Larish, J. F., Logan, G. D., & Strayer, D. L. (1994). Aging and inhibition: beyond a unitary view of inhibitory processing in attention. Psychol Aging, 9(4), 491-512.
Levenson, R. W. (1999). The intrapersonal functions of emotion. Cognition & Emotion, 13(5), 481-504.
Logan, G., & Cowan, W. B. (1984). On the ability to inhibit throught and action: a theory of an act of control. Psychological review, 91(3), 295-327.
Logan, G. D. (1994). On the ability to inhibit thought and action: A users’ guide to the stop signal paradigm. Inhibitory processes in attention, memory, and language, 189–239.
Logan, G. D., & Burkell, J. (1986). Dependence and independence in responding to double stimulation: A comparison of stop, change, and dual-task paradigms. Journal of Experimental Psychology: Human Perception and Performance, 12(4), 549-563.
Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: a model and a method. Journal of Experimental Psychology: Human Perception and Performance, 10(2), 276–291.
Logan, G. D., & Irwin, D. E. (2000). Don’t look! Don’t touch! Inhibitory control of eye and hand movements. Psychonomic Bulletin & Review, 7(1), 107-112.
Logan, G. D., Schachar, R. J., & Tannock, R. (1997). Impulsivity and inhibitory control. Psychological Science, 8(1), 60-64.
Lunenburger, L., & Hoffmann, K. P. (2003). Arm movement and gap as factors influencing the reaction time of the second saccade in a double-step task. European Journal of Neuroscience, 17(11), 2481.
Lunenburger, L., Kutz, D. F., & Hoffmann, K. P. (2000). Influence of arm movements on saccades in humans. European Journal of Neuroscience, 12(11), 4107-4116.
MacLeod, C. M. (2007). The concept of inhibition in cognition. Inhibition in Cognition, 3-23.
May, C. P., Kane, M. J., & Hasher, L. (1995). Determinants of negative priming. Psychological Bulletin, 118, 35-35.
Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: the role of backward inhibition. J Exp Psychol Gen, 129(1), 4-26.
Menzer, D. (2002). Effects of Variations in Response Mappings on Backward Inhibition in the Task Set Switching Paradigm: Wake Forest University. Dept. of Psychology.
Mordkoff, J. T., & Gianaros, P. J. (2000). Detecting the onset of the lateralized readiness potential: A comparison of available methods and procedures. Psychophysiology, 37(03), 347-360.
Neill, W. T. (2007). Mechanisms of Transfer-Inappropriate Processing. Inhibition in Cognition, 63.
Neill, W. T., & Mathis, K. M. (1998). Transfer-inappropriate processing: Negative priming and related phenomena. The psychology of learning and motivation: Advances in research and theory, 38, 1-44.
Nieuwenhuis, S., Yeung, N., van den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, and Behavioral Neuroscience, 3(1), 17–26.
Overtoom, C. C. E., Kenemans, J. L., Verbaten, M. N., Kemner, C., van der Molen, M. W., van Engeland, H., et al. (2002). Inhibition in children with attention-deficit/hyperactivity disorder: a psychophysiological study of the stop task. Biological Psychiatry, 51(8), 668-676.
Pfefferbaum, A., Ford, J. M., Weller, B. J., & Kopell, B. S. (1985). ERPs to response production and inhibition. Electroencephalogr Clin Neurophysiol, 60(5), 423-434.
Polich, J., & Margala, C. (1997). P300 and probability: comparison of oddball and single-stimulus paradigms. International Journal of Psychophysiology, 25(2), 169-176.
Quirk, G. J. (2006). Extinction: new excitement for an old phenomenon. Biological psychiatry, 60(4), 317.
Ramautar, J. R., Kok, A., & Ridderinkhof, K. R. (2004). Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated. Brain and Cognition, 56(2), 19.
Ramautar, J. R., Kok, A., & Ridderinkhof, K. R. (2006). Effects of stop-signal modality on the N2/P3 complex elicited in the stop-signal paradigm. Biological Psychology, 72(1), 96-109.
Ramautar, J. R., Slagter, H. A., Kok, A., & Ridderinkhof, K. R. (2006). Probability effects in the stop-signal paradigm: The insula and the significance of failed inhibition. Brain Research, 1105(1), 143-154.
Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage, 20(1), 351-358.
Snyder, L. H. (2000). Coordinate transformations for eye and arm movements in the brain. Current Opinion in Neurobiology, 10(6), 747-754.
Stahl, J., & Gibbons, H. (2007). Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: An electrophysiological investigation using a stop-signal task. Clinical Neurophysiology, 118(3), 581-596.
Stuphorn, V., Hoffmann, K. P., & Miller, L. E. (1999). Correlation of primate superior colliculus and reticular formation discharge with proximal limb muscle activity (Vol. 81, pp. 1978-1982): Am Physiological Soc.
Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views. The Quarterly Journal of Experimental Psychology Section A, 54(2), 321-343.
van Boxtel, G. J. M., van der Molen, M. W., Jennings, J. R., & Brunia, C. H. M. (2001). A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biological Psychology, 58(3), 229-262.
Verbruggen, F., & Logan, G. D. (2008a). Long-term aftereffects of response inhibition: Memory retrieval, task goals, and cognitive control. Journal of Experimental Psychology, 34(5), 1229-1235.
Verbruggen, F., & Logan, G. D. (2008b). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12(11), 418-424.
Verleger, R., Jaskowski, P., & Wascher, E. (2005). Evidence for an integrative role of P3b in linking reaction to perception. Journal of Psychophysiology, 19(3), 165.
劉佳蓉. (2006). 注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響What does the saccade curvature represent: attentional allocation or saccade programming? 國立中央大學認知與神經科學研究所碩士或博士論文,未出版,桃園縣中壢市。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top