跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉又寧
研究生(外文):Yo-Ning Liu
論文名稱:脈絡效果對於詞彙辨識的影響:事件相關電位研究
論文名稱(外文):Contextual effect on visual word recognition:Evidences from the ERPs studies
指導教授:李佳穎李佳穎引用關係
指導教授(外文):Chia-Ying Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:事件相關電位預測力詞頻字形相似度句子理解N1P200N400
外文關鍵詞:event-related potentials (ERPs)predictabilityword frequencyorthographic similaritysentence comprehensionN1P200N400
相關次數:
  • 被引用被引用:2
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:134
  • 收藏至我的研究室書目清單書目收藏:1
近年來許多ERP與MEG的研究在探討句子脈絡會在什麼時間點,以何種形式影響字詞辨識的歷程,然而這個議題仍然存在著許多爭議。有些研究在早期的ERP成分中(如N1、P200)發現語意或詞頻的效果,因而認為在早期階段(在字詞呈現後的200毫秒內)詞彙的處理應當就能夠提取詞彙的語意訊息,所以支持早期觸接。另一方面,主張晚期觸接理論的研究則認為,早期階段的詞彙處理並未觸及語意,脈絡可能對詞彙的早期知覺或字形分析到晚期的語意處理,都有可能介入。本研究將針對這個議題,在實驗一中以事件相關電位觀察脈絡的預測力與詞頻效果在不同階段的腦波成分(N1、P200、N400)所展現的效果,探討脈絡訊息在不同的詞彙處理階段下以何種形式影響詞彙的處理。實驗一我們發現脈絡對於詞彙處理,在不同的階段下有著不同形式的影響。在N1上有顯著的詞頻與預測力的交互作用,預測力對高頻詞產生很大的影響,但不會影響低頻詞的處理,顯示早期脈絡會促發字形在視覺特徵上的處理。高預測力詞會引發較正向的P200,反映脈絡在此階段與字形分析與次詞彙激發有關。在N400上,預測力對於低頻詞的影響則大於高頻詞,反映脈絡對於語意整合的處理。為了瞭解早期階段脈絡效果對詞彙辨識影響的的本賥,實驗二進一步操弄預測力與字形相似度。結果發現這兩個變項會在N1產生交互作用,在高預測力的情況下得到字形相似度效果。在P200得到與實驗一相同形式的預測力效果。在N400上得到兩個變項的交互作用。綜合兩實驗的結果顯示,脈絡訊息詞彙處理各階段的歷程皆有涉入,但早期與晚期調控詞彙處理的本賥並不相同,早期脈絡主要是藉由增進視覺特徵偵測以促進字形的處理,晚期脈絡的影響則與語意的整合有關,本研究兩個實驗的結果都支持晚期觸接理論的交互激發模型。
Current ERP/MEG studies showed controversial evidences on WHEN and HOW the contextual information modulates the visual word recognition. On the one hand, some studies suggested that the early processing (within 200 ms of visual word presentation) of lexical entries included semantic and phonological properties by demonstrating the semantic or lexicality effects on early ERP components (such as N1 and P200) and supported the interactive activation model. On the other hand, theories such as the modular model or those associated with Dehaene and colleagues (Dehaene et al.,2005 ) suggested that early processing of visually presented words involved bottom-up visual feature detection leading to visual word-form recognition, but not necessarily access to the semantic lexicon with the early stage of lexical access. The present study aims to address this issue by examining the effects of word frequency and contextual predictability (cloze probability of the target word embedded in the sentence) on N1, P200 and N400 components which have been related to various cognitive operations on the early visual processing, perceptual decoding and semantic processing. The data showed a significant predictability-by-frequency interaction at the anterior N1 component. The predictability effect, where the low predictability words elicited more negativity N1 than high predictability words, was only found in reading high frequency word. There was a significant predictability effect at P200, in which the low predictability words elicited less positive amplitudes than high predictability words. The N400 revealed a significant predictability effect; low predictability words elicited greater N400 than high predictability ones, but this effect did not interact with frequency. In experiment 2, the contextual predictability (high cloze probability, low cloze probability) and the orthographic similarity (orthographically identical, orthographically similar,
orthographically dissimilar) was manipulated. The data showed a significant interaction at anterior N1 component. The orthographically identical words elicited more negativity in anterior N1 than the orthographically similar / dissimilar did, whereas this orthographic effect was not found in the low predictability words. There was also a significant predictability effect at P200 which was found in experiment 1. The predictability-by-orthographic similarity interaction was significant at N400. The results of two experiments suggest that the temporal dynamics of contextual information affects the visual word recognition. The visual-feature detection or the orthographic activation was facilitated by contextual information in the early stage. The contextual effect at N400 reflects the facilitation of semantic integration in the late stage of visual word recognition.
1 文獻回顧............................................................ 4
1.1 詞彙觸接 ........................................................ 4
1.2 脈絡整合 ........................................................ 5
1.3 字詞辨識模型 .................................................... 6
1.4 中文字詞辨識模型 ................................................ 8
2 事件相關電位 (EVENT-RELATED POTENTIAL, ERP)........................ 10
2.1語言相關腦波成分 ............................................... 11
2.1.1 N1......................................................... 11
2.1.2 P200....................................................... 13
2.1.3 N400....................................................... 15
2.2 早期與晚期腦波成分 ............................................. 17
2.3 脈絡效果對詞彙處理的影響—事件相關電位研究 ..................... 18
2.5 早期觸接理論 VS. 晚期觸接理論 ................................... 20
3 研究目的........................................................... 24
4 實驗一:預測力與詞頻-事件相關電位研究............................. 26
4.1 實驗方法與設計 ................................................. 26
4.2 受詴者 ......................................................... 26
4.3 實驗材料 ....................................................... 26
4.4 實驗程序 ....................................................... 27
4.5 EEG記錄與參數設定 ............................................. 28
4.6 ERPS前處理 ..................................................... 29
5 結果............................................................... 29
5.1 行為結果 ....................................................... 30
5.2 ERP分析結果 ................................................... 30
5.3 ERPS統計分析-重複效果分析 ..................................... 32
5.3.1 Anterior N1(120-150 msec).................................. 32
5.3.2 P200(200-250 msec)......................................... 32
5.3.3 N400(300-500 msec)......................................... 32
5.4 ERPS統計分析-預測力與詞頻效果 ................................. 33
5.4.1 Anterior N1(120-150 msec).................................. 33
ii
5.4.2 P200(200-250 msec)......................................... 34
5.4.3 N400(300-500 msec)......................................... 35
6 討論............................................................... 36
6.1 ANTERIOR N1 ..................................................... 38
6.2 P200 ........................................................... 39
6.3 N400 ........................................................... 40
7 實驗二:脈絡效果對字形處理的影響................................... 41
7.1 實驗二方法 ..................................................... 45
7.1.1 受詴者..................................................... 45
7.1.2 實驗設計與實驗材料......................................... 45
7.1.3 實驗程序................................................... 47
7.1.4 EEG 記錄................................................... 48
8 結果............................................................... 48
8.1 行為結果 ....................................................... 48
8.2 ERP分析結果 ................................................... 49
8.2.1 Anterior N1(90-140 msec)................................... 50
8.2.2 P200 (200-250 msec)........................................ 51
8.2.3 N400 (250-450 msec)........................................ 52
9 討論............................................................... 54
10 綜合討論.......................................................... 57
11 未來展望.......................................................... 61
參考文獻............................................................. 62
附錄................................................................. 67
附錄一、實驗一材料列表............................................. 67
附錄二、實驗二材料列表............................................. 73
附錄三、統計分析列表............................................... 77
Ashby, J., Sanders, L. D., & Kingston, J. (2009). Skilled readers begin processing sub-phonemic features by 80滟s during visual word recognition: Evidence from ERPs. Biological Psychology, 80(1), 84-94.
Assadollahi, R., & Pulvermüller, F. (2003). Early influences of word length and frequency: a group study using MEG. Neuroreport, 14(8), 1183-1187.
Barber, H., Vergara, M., & Carreiras, M. (2004). Syllable-frequency effects in visual word recognition: evidence from ERPs. Neuroreport, 15(3), 545-548
Barber, H. A., & Kutas, M. (2007). Interplay between computational models and cognitive electrophysiology in visual word recognition. Brain Research Reviews, 53(1), 98-123.
Becker, C. A. (1979). Semantic context and word frequency effects in visual word recognition. Journal of Experimental Psychology: Human Perception and Performance, 5(2), 252-259.
Bentin, S., McCarthy, G., & Wood, C. C. (1985). Event-related potentials, lexical decision and semantic priming. Electroencephalography and Clinical Neurophysiology, 60(4), 343-355.
Besson, M., Kutas, M., & Van Petten, C. (1992). An event-related potential (ERP) analysis of semantic congruity and repetition effects in sentences, Journal of Cognitive Neuroscience (Vol. 4, pp. 132-149).
Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: the case for the visual word form area. Neuroimage, 22(1), 466-476.
Dambacher, M., Kliegl, R., Hofmann, M., & Jacobs, A. M. (2006). Frequency and predictability effects on event-related potentials during reading. Brain Research, 1084(1), 89-103.
Deacon, D., Dynowska, A., Ritter, W., & Grose-Fifer, J. (2004). Repetition and semantic priming of nonwords: Implications for theories of N400 and word recognition. Psychophysiology, 41, 60-74.
Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: a proposal. Trends in Cognitive Sciences, 9(7), 335-341.
Federmeier, K. D. (2007). Thinking ahead: The role and roots of prediction in language comprehension. Psychophysiology, 44, 491-505.
Federmeier, K. D., & Kutas, M. (1999). A Rose by Any Other Name: Long-Term Memory Structure and Sentence Processing. Journal of Memory and Language, 41(4), 469-495.
Federmeier, K. D., & Kutas, M. (2001). Meaning and modality: Influences of context, semantic memory organization, and perceptual predictability on picture
63
processing. Journal of Experimental Psychology: Learning, Memory, and Cognition., 27(1), 202-224.
Federmeier, K. D., Mai, H., & Kutas, M. (2005). Both Sides Get the Point: Hemispheric Sensitivities to Sentential Constraint. Memory and Cognition, 33, 871-886.
Fischler, I., & Bloom, P. A. (1979). Automatic and Attentional Processes in the Effects of Sentence Contexts on Word Recognition. Journal of Verbal Learning and Verbal Behavior, 18, 1-20.
Fischler, I., & Bloom, P. A. (1980). Rapid processing of the meaning of sentences. Memory and Cognition, 8(3), 216-225.
Forster, K. I. (1979). Levels of processing and the structure of the language processor. . In: Cooper, W., Walker, E. (Eds.), Sentence Processing: Psycholinguistic Studies Presented to Merrill Garrett. Erlbaum, Hillsdale, NJ, pp. 25-87.
Forster, K. I., & Chambers, S. M. (1973). Lexical access and naming time. Journal of Verbal Learning and Verbal Behavior, 12(6), 627-635.
Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., & Marslen-Wilson, W. D. (2006). The time course of visual word recognition as revealed by linear regression analysis of ERP data. NeuroImage, 30(4), 1383-1400.
Hauk, O., Patterson, K., Woollams, A., Watling, L., Pulvermüller, F., & Rogers, T. T. (2006). [Q:] When Would You Prefer a SOSSAGE to a SAUSAGE? [A:] At about 100 msec. ERP Correlates of Orthographic Typicality and Lexicality in Written Word Recognition. Journal of Cognitive Neuroscience, 18(5), 818-832.
Hauk, O., & Pulvermüller, F. (2004). Effects of word length and frequency on the human event-related potential. Clinical Neurophysiology, 115(5), 1090-1103.
Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical Signs of Selective Attention in the Human Brain. Science, 182(4108), 177-180.
Holcomb, P. J. (1993). Semantic priming and stimulus degradation: implications for the role of the N400 in language processing. Psychophysiology, 30(1), 47-61.
Hsu, C.-H., Tsai, J.-L., Lee, C.-Y., & Tzeng, O. J. L. (2009). Orthographic combinability and phonological consistency effects in reading Chinese phonograms: An event-related potential study. Brain and Language, 108(1), 56-66.
Inhoff, A. W., Rayner, Keith. (1986). Parafoveal word processing during eye fixations in reading: Effects of word frequency. Perception and Psychophysics, 40(6), 431-439.
Jordan, T. R., & Thomas, S. M. (2002). In search of perceptual influences of sentence context on word recognition. journal of experimental psychology. Learning, memory, and cognition, 28, 34-45.
Kliegl, R., Grabner, E., Rolfs, M., & Engbert, R. (2004). Length, frequency, and predictability effects of words on eye movements in reading. The European
64
Journal of Cognitive Psychology, 16, 262-284.
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: brain potentials reflect semantic incongruity. Science, 207(4427), 203-205.
Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307(5947), 161-163.
Lee, C.-Y., Tsai, J.-L., Chan, W.-H., Hsu, C.-H., Hung, D. L., & Tzeng, O. J. L. (2007). Temporal dynamics of the consistency effect in reading Chinese: an event-related potentials study. Neuroreport, 18(2), 147-151 110.1097/WNR.1090b1013e328010d328014e328014.
Lee, C.-Y., Tsai, J.-L., Chiu, Y.-C., Tzeng, O. J. L., & Hung, D. L. (2006). The Early Extraction of Sublexical Phonology in Reading Chinese Pseudocharacters: An Event-related Potentials Study. LANGUAGE AND LINGUISTICS, 7(3), 619-636.
Liu, I.-m., Wu, J.-t., & Chou, T.-l. (1996). Encoding operation and transcoding as the major loci of the frequency effect. Cognition, 59(2), 149-168.
Liu, Y., Perfetti, C. A., & Hart, L. (2003). ERP evidence for the time course of graphic, phonological, and semantic information in Chinese meaning and pronunciation decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1231-1247.
Luck, S., & Hillyard, S. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, May 31(3), 291-308.
Luck, S. J., Fan, S., & Hillyard, S. A. (1993). Attention-related modulation of sensory-evoked brain activity in a visual search task. Journal of Cognitive Neuroscience, 5(2), 188-195.
McClelland, J. L. (1987). The case of interactionism in language processing. . In: Coltheart, M. (Ed.), Attention and Performance XII: The Psychology of Reading, Erlbaum, Hillsdale,, NJ, pp. 3-36.
Morton, J. (1964). The effects of context on the visual duration threshold for words. British Journal of Psychology, 55, 165-180.
Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76(2), 165-178.
Penolazzi, B., Hauk, O., & Pulvermüller, F. (2007). Early semantic context integration and lexical access as revealed by event-related brain potentials. Biological Psychology, 74(3), 374-388.
Perfetti, C. A., Liu, Y., & Tan, L. H. (2005). The Lexical Constituency Model: Some Implications of Research on Chinese for General Theories of Reading. Psychological Review,, 112(1), 43-59.
Perfetti, C. A., & Tan, L. H. (1998). The time-course of graphic, phonological, and semantic activation in Chinese character identification. Journal of
65
Experimental Psychology: Learning, Memory, and Cognition, 24, 1-18.
Pylkkänen, L., & Marantz, A. (2003). Tracking the time course of word recognition with MEG. Trends in Cognitive Sciences, 7(5), 187-189.
Rayner, K., Li, X., Juhasz, B. J., & Yan, G. (2005). The effect of word predictability on the eye movements of Chinese readers. Psychonomic Bulletin Review, 12, 1089-1093.
Rayner, K., & Well, A. D. (1996). Effects of contextual constraint on eye movements in reading: A further examination. . Psychonomic Bulletin & Review, 3, 504-509.
Rugg, M. (1990). Event-related brain potentials dissociate repetition effects of high- and low-frequency words. Memory and Cognition, 18(4), 367-379.
Rugg, M. D. (1985). The Effects of Semantic Priming and Word Repetition on Event-Related Potentials. Psychophysiology, 22(6), 642-647.
Rugg, M. D. (1987). Dissociation of Semantic Priming, Word and Non-Word Repetition Effects by Event-Related Potentials. The Quarterly Journal of Experimental Psychology, 39A, 123-148.
Rugg, M. D., & Doyle, M. C. (1992). Event-Related Potentials and Recognition Memory for Low- and High-Frequency Words. Journal of Cognitive Neuroscience, 4(1), 69-79.
Schuberth , R., Spoehr ,KT. , Lane ,DM. (1981). Effects of stimulus and contextual information on the lexical decision process. Memory and Cognition, 9(1), 68-77.
Schuberth, R. E., & Eimas, P. D. (1977). Effects of Context on the Classification of Words and Nonwords. Journal of Experimental Psychology: Human Perception and Performance, 3(1), 27-36.
Sereno, S. C., Brewer, C. C., & O'Donnell, P. J. (2003). Context effects in word recognition: evidence for early interactive processing. Psychological Science, 14(4), 328-333.
Sereno, S. C., Rayner, K., & Posner, M. (1998). Establishing a time-line of word recognition: evidence from eye movements and event-related potentials. . Neuroreport, 9(10), 2195 -2200
Solomyak, O., & Marantz, A. (2009). Lexical access in early stages of visual word processing: A single-trial correlational MEG study of heteronym recognition. Brain and Language, 108(3), 191-196.
Summerfield, C., Egner, T., Greene, M., Koechlin, E., Mangels, J., & Hirsch, J. (2006). Predictive Codes for Forthcoming Perception in the Frontal Cortex. Science, 314(5803), 1311-1314.
Taylor, W. L. (1953). "Cloze procedure": a new tool for measuring readability. Journalism Quarterly, 30, 415-433.
66
Van Petten, C. (1990). Interactions between sentence context and word frequency in event-related brain potentials. Memory and Cognition, 18(4).
Van Petten, C. (1995). Words and sentences: Event-related brain potential measures. Psychophysiology, 32, 511-525.
Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37(02), 190-203.
Whaley, C. P. (1978). Word-nonword classification time. Journal of Verbal Learning and Verbal Behavior, 17(2), 143-154.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊