跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 19:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張宇瞻
研究生(外文):Acer Y.-C. Chang
論文名稱:數字數量對時間處理的早期影響
論文名稱(外文):Early Influence from Numerical Magnitude on Temporal Processing
指導教授:吳嫻吳嫻引用關係郭文瑞郭文瑞引用關係
指導教授(外文):Denise H. WuNissen W.-J. Kuo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:104
中文關鍵詞:數量表徵時間知覺數學認知
外文關鍵詞:Magnitude RepresentationTemporal PerceptionNumerical CognitionA Theory of MagnitudeTemporal Reproduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:1
對於人類而言,數量訊息的表徵及處理極為重要,而且有許多過去的研究結果指出時間與其他種類的數量訊息〈例如空間與數字〉之間具有很強的關聯性。本論文之主旨在釐清時間與數字的關聯是發生在反應階段或是在反應選擇前的階段。本實驗的時間複製作業中,受試者被要求要複製數字呈現的時間長度,結果當呈現的數字較大時,受試者複製的時間長度也較長,表示即使在不須執行反應選擇情況下,數字訊息仍然會對時間處理產生影響。當數字刺激被安排在複製階段時,行為表現則出現相反的結果。此效果顯示數量訊息對於時間處理的影響不能歸因於單純的數字的數量大小和複製時間長短的對應,而是發生在早期階段的結果。在事件相關電位實驗中使用關聯負變化的強度當作時間處理的指標,實驗結果顯示關聯負變化之強度亦受數字出現之影響,且由大數字及小數字所引起之關聯負變化強度之差異會隨時間增長而增加,代表數字訊息對時間處理的影響是即時的效應。總結而言,本論文所提供的證據支持數字訊息對於時間處理的影響發生在早期階段,並且可能存在部分共同的編碼機制。
One of crucial abilities in human is to represent and process magnitude information. Many previous studies provide a strong relationship between time and other magnitude dimensions such as space and numerosity. The aim of the thesis is to clarify whether the relationship between time and number is built before or after the response selection. In current study, the temporal reproduction task was employed in which the participants were instructed to reproduce the duration of a number. The result shows that the reproduced duration was longer when the presented number was larger. Interestingly, the numerical information still influenced the temporal processing, even though there was no need to perform the response selections By placing the number stimuli in reproduction phase, the behavior pattern was reversed. Such an effect observed in the reproduction task cannot be accounted for simply by the intuitive association between “small number and short time” and “large number and long time” at the response and/or decision stage rather the result implied the early influence on temporal processing. In the ERP studies, the temporal process, as indexed by the CNV amplitudes, were influenced simultaneously with the appearance of a number. Furthermore, the amplitude difference between small and large numbers increased over time, indicating the real-time influence of the numerical information on the temporal processing. To conclusion, the thesis provides the evidence of the early influence on temporal processing. Our results suggest time and quantity partly share a common representation or encoding mechanism.
Abstract II
中文摘要 III
Table of Contents IV
List of figures VIII
List of Tables IX
Chapter 1 Introduction 1
1.1 Is There a Common Representation Between Numbers and Time? 2
1.1.1 The Animal Study 3
1.1.2 The Neuropsychological Study 4
1.1.3 The Developmental Evidence 5
1.1.4 The Psychophysical Evidence: The Stroop-like Paradigm 6
1.1.5 The Electrophysiological Evidence 8
1.2 An Alternative Explanation of the Number-time Stroop Effect 10
1.3 The Aims of the Current Study 13
Chapter 2 Experiment 1 15
2.1 Method 15
2.1.1 Participants 15
2.1.2 Apparatus, materials, and design 16
2.1.3 Procedures 17
2.1.3.1 Pre-test 17
2.1.3.2 Experimental session 19
2.2 Results 21
2.3 Discussion 27
Chapter 3 Experiment 2 31
3.1 Method 32
3.1.1 Participants 32
3.1.2 Apparatus, materials, and design 32
3.1.3 Procedure 33
3.2 Results 34
3.3 Discussion 36
Chapter 4 Experiment 3 38
4.1 Method 38
4.1.1 Participants 39
4.1.2 Apparatus, materials, and procedure 39
4.2 Results 40
4.3 Discussion 42
Chapter 5 Experiment 4 44
5.1 Method 44
5.1.1 Participants 44
5.1.2 Apparatus, materials, and procedure 45
5.2 Results 45
5.3 Discussion 48
Chapter 6 Experiment 5 49
6.1 Method 51
6.1.1 Participants 51
6.1.2 Materials and design 51
6.1.3 Procedure 52
6.1.4 Apparatus and EEG recording 54
6.1.5 ERP Data pre-processing 55
6.2 Results 56
6.2.1 Behavioral data 56
6.2.2 CNVs 59
6.3 Discussion 62
Chapter 7 Experiment 6 63
7.1 Method 63
7.1.1 Participants 63
7.1.2 Materials, design, and procedure 64
7.1.3 Apparatus, EEG recording, and ERP Data pre-processing 65
7.2 Results 66
7.2.1 Behavioral data 66
7.2.2 CNVs 68
7.3 Discussion 74
Chapter 8 General Discussion 76
Reference 85
Basso, G., Nichelli, P., Frassinetti, F., & di Pellegrino, G. (1996). Time perception in a neglected space. Neuroreport, 7(13), 2111.
Birbaumer, N., Elbert, T., Canavan, A. G. M., & Rockstroh, B. (1990). Slow potentials of the cerebral-cortex and behavior. Physiological Reviews, 70(1), 1-41.
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436.
Brannon, E. M., Lutz, D., & Cordes, S. (2006). The development of area discrimination and its implications for number representation in infancy. Developmental Science, 9(6), F59.
Brannon, E. M., Suanda, S., & Libertus, K. (2007). Temporal discrimination increases in precision over development and parallels the development of numerosity discrimination. Developmental Science, 10(6), 770-777.
Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B-Biological Sciences, 364(1525), 1831-1840.
Bueti, D., Walsh, V., Frith, C., & Rees, G. (2008). Different brain circuits underlie motor and perceptual representations of temporal intervals. Journal of Cognitive Neuroscience, 20(2), 204-214.
Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755-765.
Burr, D., & Morrone, C. (2006). Time perception: space-time in the brain. Current Biology, 16(5), R171-R173.
Creem, S. H., & Proffitt, D. R. (2001). Defining the cortical visual systems:“What”,“Where”, and “How”. Acta Psychologica, 107(1-3), 43-68.
Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14(2), 218-224.
Dormal, V., Seron, X., & Pesenti, M. (2006). Numerosity-duration interference: A Stroop experiment. Acta Psychologica, 121(2), 109-124.
Driver, J., & Vuilleumier, P. (2001). Perceptual awareness and its loss in unilateral neglect and extinction. Cognition, 79(1-2), 39-88.
Feigenson, L. (2007). The equality of quantity. Trends in Cognitive Sciences, 11(5), 185-187.
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314.
Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555-556.
Fortin, C., & Rousseau, R. (1998). Interference from short-term memory processing on encoding and reproducing brief durations. Psychological Research-Psychologische Forschung, 61(4), 269-276.
Geisser, S., & Greenhouse, S. W. (1958). An extension of Box's results on the use of the F distribution in multivariate analysis. The Annals of Mathematical Statistics, 885-891.
Gibbon, J., & Church, R. M. (1984). Sources of variance in an information processing theory of timing. Animal cognition, 465–488.
Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy of Sciences, 423(1 Timing and Time Perception), 52-77.
Goodale, M. A., & Westwood, D. A. (2004). An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Current Opinion in Neurobiology, 14(2), 203-211.
Hellstrom, A. (1985). The time-order error and its relatives: Mirrors of cognitive processes in comparing. Psychological Bulletin, 97(1), 35-61.
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435-448.
Ivry, R. B., & Hazeltine, R. E. (1995). Perception and production of temporal intervals across a range of durations - Evidence for a common timing mechanism. Journal of Experimental Psychology-Human Perception and Performance, 21(1), 3-18.
Kiesel, A., & Vierck, E. (2009). SNARC-like congruency based on number magnitude and response duration. Journal of Experimental Psychology-Learning Memory and Cognition, 35(1), 275-279.
Ladanyi, M., & Dubrovsky, B. (1985). CNV and time estimation. International Journal of Neuroscience, 26(3), 253 - 257.
Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense. Large-number discrimination in human infants. Psychological Science, 14(5), 396-401.
Lorch, R. F., & Myers, J. L. (1990). Regression-analyses of repeated measures data in cognitive research. Journal of Experimental Psychology-Learning Memory and Cognition, 16(1), 149-157.
Loveless, N. E., & Sanford, A. J. (1974a). Effects of age on the contingent negative variation and preparatory set in a reaction-time task. Journal of Gerontology, 29(1), 52.
Loveless, N. E., & Sanford, A. J. (1974b). Slow potential correlates of preparatory set. Biological Psychology, 1(4), 303-314.
Macar, F., & Besson, M. (1985). Contingent negative variation in processes of expectancy, motor preparation and time estimation. Biological Psychology, 21(4), 293-307.
Macar, F., & Vidal, F. (2003). The CNV peak: An index of decision making and temporal memory. Psychophysiology, 40(6), 950-954.
Macar, F., & Vidal, F. (2004). Event-related potentials as indices of time processing: A review. Journal of Psychophysiology, 18(2-3), 89-104.
Macar, F., Vidal, F., & Casini, L. (1999). The supplementary motor area in motor and sensory timing: Evidence from slow brain potential changes. Experimental Brain Research, 125(3), 271-280.
MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review: American Psychological Association.
Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Research, 21(2), 139-170.
Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320-334.
Milner, A. D., & Goodale, M. A. (2007). Two visual systems re-viewed. Neuropsychologia.
Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R., et al. (2008). Perceiving numbers alters time perception. Neuroscience Letters, 438(3), 308-311.
Pfeuty, M., Ragot, R., & Pouthas, V. (2003a). Processes involved in tempo perception: A CNV analysis. Psychophysiology, 40(1), 69-76.
Pfeuty, M., Ragot, R., & Pouthas, V. (2003b). When time is up: CNV time course differentiates the roles of the hemispheres in the discrimination of short tone durations. Experimental Brain Research, 151(3), 372-379.
Pouthas, V., Garnero, L., Ferrandez, A. M., & Renault, B. (2000). ERPs and PET analysis of time perception: Spatial and temporal brain mapping during visual discrimination tasks. Human Brain Mapping, 10(2), 49-60.
Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416-442.
Proctor, R. W., & Dutta, A. (1995). Skill acquisition and human performance: Sage Thousand Oaks, CA.
Ruchkin, D. S., McCalley, M. G., & Glaser, E. M. (1977). Event related potentials and time estimation. Psychophysiology, 14(5), 451-455.
Sawyer, T. F., Meyers, P. J., & Huser, S. J. (1994). Contrasting task demands alter the perceived duration of brief time intervals. Perception and Psychophysics, 56(6), 649-657.
Schwartz, O., Hsu, A., & Dayan, P. (2007). Space and time in visual context. Nat Rev Neurosci, 8(7), 522-535.
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology: General, 18, 643-662.
Ulbrich, P., Churan, J., Fink, M., & Wittmann, M. (2007). Temporal reproduction: Further evidence for two processes. Acta Psychologica, 125(1), 51-65.
Vallesi, A., Binns, M. A., & Shallice, T. (2008). An effect of spatial-temporal association of response codes: Understanding the cognitive representations of time. Cognition, 107(2), 501-527.
vanMarle, K., & Wynn, K. (2006). Six-month-old infants use analog magnitudes to represent duration. Developmental Science, 9(5), F41-F49.
Vicario, C. M., Pecoraro, P., Turriziani, P., Koch, G., Caltagirone, C., & Oliveri, M. (2008). Relativistic compression and expansion of experiential time in the left and right space. PLoS ONE, 3(3), e1716.
Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci, 7(11), 483-488.
Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., & Winter, A. L. (1964). Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature, 203, 380-384.
Watson, A. B., & Pelli, D. G. (1983). QUEST: a Bayesian adaptive psychometric method. Percept Psychophys, 33(2), 113-120.
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1-B11.
Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88-101.
Xuan, B., Chen, X.-C., He, S., & Zhang, D.-R. (2009). Numerical magnitude modulates temporal comparison: An ERP study. Brain Research, 1269, 135-142.
Xuan, B., Zhang, D., He, S., & Chen, X. C. (2007). Larger stimuli are judged to last longer. Journal of Vision, 7(10), 2.
Zakay, D. (1990). The evasive art of subjective time measurement: Some methodological dilemmas. Cognitive models of psychological time, 59, 84.
Zakay, D. (1993). Time-estimation methods - do they influence prospective duration estimates? Perception, 22(1), 91-101.
Zorzi, M., Priftis, K., & Umilta, C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417(6885), 138-139.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top