跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:易永祥
研究生(外文):Yung-Hsiang Yi
論文名稱:探討整合蛋白(integrinaIIbb3)與Na+-H+交換體(NHE1)及Ca2+-Na+交換體(NCX1)間產生交互作用後觸發細胞內鈣離子波動之作用機轉
論文名稱(外文):Membrane targeting and interaction of NHE1 and NCX1 with integrinaIIbb3 by lipid microdomain induce a calcium influx that triggers calcium oscillation
指導教授:林奇宏林奇宏引用關係
指導教授(外文):Chi-Hung Lin
學位類別:博士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:128
中文關鍵詞:鈣離子波動整合蛋白鈉氫交換體鈉鈣交換體脂筏螢光半衰期影像/螢光共振能量轉移
外文關鍵詞:calcium oscillationintegrinNHENCXlipid raftFLIM/FRET
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
在細胞內鈣離子波動中,一般認為”鈣離子誘發鈣離子釋放”(CICR)的作用機轉是促成細胞質中鈣離子循環且不斷的釋放及回收的重要基礎。即便如此,其中的細節至今仍舊混沌不明,特別是在非興奮性細胞中引發”鈣離子誘發鈣離子釋放”(CICR)作用機轉上起始的鈣離子流動是如何產生?至今仍不清楚。有別於傳統藉由calcium channels or phospholipase C-inositol trisphosphate所觸發的細胞內鈣離子波動,我們發現另一個能經由人類整合蛋白(integrin脉IIb刍3)下游訊息觸發細胞內鈣離子波動之全新機轉。在我們的研究中,發現表現人類整合蛋白(integrin脉IIb刍3)之中國倉鼠卵巢癌細胞株(CHOαIIbβ3)經fibrinogen或蛇毒蛋白rhodostomin基質結合刺激後,誘發Na+-H+交換體(NHE1)及Ca2+-Na+交換體(NCX1)在細胞內囊泡上分別與整合蛋白(integrin脉IIb刍3)進行結合並進一步送達至細胞膜上產生功能性之協同作用,造成鈣離子湧入細胞內引發細胞內鈣離子波動的現象。我們亦發現細胞膜上之Na+-H+交換體(NHE1)及Ca2+-Na+交換體(NCX1)再進行功能性之協同作用過程中會先藉由Na+-H+交換體(NHE1)產生一個細胞內鈉離子上升,並藉此進一步促使Ca2+-Na+交換體(NCX1)在移除細胞內過多的鈉離子的同時產造成鈣離子自細胞外流入,進而引發細胞內鈣離子誘發鈣離子釋放”(CICR)的作用機轉,藉此成為人類整合蛋白(integrin脉IIb刍3)下游訊息所觸發細胞內鈣離子波動中的一個起始機轉。在這些在細胞內囊泡上結合的過程,由於彼此間結合力薄弱或是過程短暫及其他未知因素,導致無法以傳統生化方式研究,為克服此一困難,本論文導入先進的光學技術(FLIM-FRET)並於活細胞觀測這些在細胞內囊泡上結合的過程。並在進一步的研究中發現這些囊泡上結合與送達至細胞膜的過程是藉細胞中”lipid microdomain”相關機制的參與所完成。因此,我們的研究對非興奮性細胞中”鈣離子誘發鈣離子釋放”(CICR)作用機轉提供一份全新且明確的分子作用機轉。
Abstract
The cyclic calcium release-and-uptake during calcium oscillation is thought to result from calcium-induced calcium release (CICR); however, it is unclear, especially in non-excitable cells, how the initial calcium mobilization occurs that triggers CICR. We report here a novel mechanism, other than conventional calcium channels or phospholipase C-inositol trisphosphate system, for initiating calcium oscillation downstream of integrin signaling. Upon integrinαIIbβ3’s binding to fibrinogen ligand or the disintegrin rhodostomin, sodium-proton exchanger NHE1 and sodium-calcium exchanger NCX1 are actively transported to the plasma membrane and they become physically coupled to integrinαIIbβ3. Lipid raft-dependent mechanisms modulate the membrane targeting and formation of NHE1/integrinαIIbβ3/NCX1 protein complex. NHE1 and NCX1 within such protein complex are functionally coupled, such that a local increase of sodium concentration caused by NHE1 can drive NCX1 to generate sodium efflux in exchange for calcium influx. The resulting calcium increase inside the cell can then trigger CICR, as a prelude to calcium oscillation downstream of integrinαIIbβ3 signaling. Fluorescence resonance energy transfer based on fluorescence lifetime measurements is employed here to monitor the intermolecular interactions among NHE1/integrinαIIbβ3/NCX1, which could not be properly detected using conventional biochemical assays.
Abstract…………………………………………………………………1
中文摘要……………...……………..………………………………….2
Introduction ……………………………………………………………4
1. Intracellular calcium signaling
a. Functions of intracellular calcium signaling
b.CICR (Calcium Induced Calcium Release) mechanism
c.CICR in excitable cell
d.CICR in non-excitable cell
2. Integrin protein family
a. Structure and classification of integrin protein family
b. Functions of integrin protein family
c. Integrin脉IIb刍3
3. Ligands of integrin脉IIb刍3
a. Fibrinogen
b. Rhodostomin
4. Thrombosis
a. Functions and significant of thrombosis
b. Calcium signaling in thrombosis
5. Sodium-proton exchanger (NHE) protein family
a. Structure of NHE protein family
b. Sodium-proton exchanger 1 (NHE1)
(1) Localization of NHE1
(2) Functions of NHE1
(3) Regulation mechanisms of NHE1 activity
(4) Roles of NHE1 in thrombosis
6. Sodium-calcium exchanger protein family
a. Structure of NCX protein family
b. Sodium-calcium exchanger 1 (NCX1)
(1) Localization of NCX1
(2) Functions of NCX1
(3) Regulation mechanisms of NCX1 activity
(4) Roles of NCX1 in thrombosis
7. Coupling effect of NHE1 and NCX1
8. Lipid raft microdomain
a. Function of lipid raft
b. Roles of lipid raft in thrombosis
c. Integrin脉IIb刍3, NHE1 and NCX1 present in lipid raft
9. Specific aims
Material and method…………………………………………………22
Material ………………………………..……………………………….22
1. Chemical
2. Detergent
3. Organic solvent
4. Kit
5. Bacterial strains
6. Cell
7. Platelet
8. Plasmid
9. Antibody
9.1 Primary antibody
9.2 Secondary antibody
10. Solution
a. Bacteria culture and transformation
b. DNA purification
c. GST fusion protein purification
d. Cell culture
e. Platelet preparation
Stock B
Stock C
Tyrode's buffer(Ca2+-free)
Tyrode's buffer(Ca2+-containing)50ml
f. Immunofluorescence staining
Fix solution
Blocking solution
Mounting solution
g. Cell lysis buffer
h. SDS-PAGE
2X Sample buffer(reducing loading buffer)
7.5% Separation gel
15% Separation gel
Stacking gel
Running buffer 5 liter,pH8.3
Semi-dry transfer buffer
10X washing solution pH7.4
Blocking solution
Striipping solution
Method…………………..……………………………..……………….33
1. DNA preparation
a. Competent cell preparation
b. Transformation
c. DNA purification
2. GST fusion protein purification
3. Ligand coating
4. Platelet preparation
5. Cell culture
6. Transfection
7. Cell attachment assay
8. Cell spreading assay
9. Calcium and sodium image
10. Immunofluorescence staining
11. Light microscopy
a. Live cell image in differential interference contrast (DIC) image or fluorescence microcopy
b. Time-lapse image in confocal fluorescence microscopy
c. Total Internal Reflection Fluorescence microscopy (TIRFM)
d. Fluorescence Lifetime Image microscopy-Fluorescence Resonance Energy Transfer (FLIM-FRET)
12. Whole cell lysate preparation
13. Isolation of detergent-resistance membrane
14. Cholesterol concentration measurement
15. Western Blot Assay
a. SDS-PAGE;SDS-Polyacrylamide Gel Electrophoresis
b. Western blotting
Result…………………………………………………………………..43
1. Net calcium influxes generated by combined NHE1-NCX1 effects induced calcium oscillations in CHO脉IIb刍3 cells grown on Fg/rhodostomin substrates.
a. CHO脉IIb刍3 cell grown on Fg/rhodosotomin substrates and exhibited calcium oscillation.
b. Fibrinogen/rhodosotomin-induced calcium oscillation in CHO脉IIb刍3 and platelet dependent on extracellular calcium and intracellular calcium store
c. Phospholypase C (PLC) and IP3 receptor inhibitors partially inhibited fibrinogen/rhodostomin-induced calcium oscillation in CHO脉IIb刍3 and platelet
d. Fg/rhodosotomin-induced calcium oscillation in CHO脉IIb刍3 and platelet could be blocked by sodium-proton exchanger-1 (NHE1) and sodium-calcium exchanger-1 (NCX1) inhibitors.
e. NCX1 inhibitor caused an NHE1-mediated [Na+]i increase and cell swelling when CHO脉IIb刍3 cell were grown on rhodostomin substrate.
2. Targeting and transient presence of NHE1/NCX1 on the plasma membrane in CHO脉IIb刍3 cells interacts with fibrinogen/rhodostomin substrates.
a. NHE1 and NCX1 present in CHO脉IIb刍3 cells.
b. Fibrinogen/rhodostomin substrates cause NHE1 targeted to plasma membrane from intracellular vesicle.
c. Fg/rhodostomin substrates cause NCX1 targeted to plasma membrane from intracellular vesicle.
d. NHE1-RFP containing vesicle transport to plasma membrane were monitored by confocal microscopy
e. NHE1-GFP containing vesicle fused into plasma membrane visualized by total internal reflection fluorescence microscopy (TIRFM)
f. Internalization of NHE1/NCX1 through calveolar endocytosis.
g. Signalling processes involved in protein targeting of NHE1/NCX1 were investigated using pharmacological approaches.
3. FLIM-FRET measurements revealed direct molecular interactions between the integrins and the ion exchangers
a. Molecular interaction between integrin脉IIb刍3 and NHE1 or NCX1
b. Molecular interaction between NHE1 and NCX1
c. Photo-bleaching of the acceptor fluorochromes prevent FRET occurred
4. Molecular interactions between the integrin and ion exchangers may be through serine-threonine kinase related signalling pathway.
a. Molecular interaction between integrin脉IIb刍3 and NHE1 occurred in intracellular vesicle.
b. Molecular interaction between integrin脉IIb刍3 and NHE1 occurred in intracellular vesicle could be inhibited by staurosporine.
c. Signalling processes involved in functional coupling between the integrin脉IIb刍3 and NHE1/NCX1 were investigated using pharmacological approaches.
i. Serine/threonine kinase probably involved in molecular interaction between integrin脉IIb刍3 and NHE1 occurred in intracellular vesicle.
ii. Intracellular calcium store involved in molecular interaction between integrin脉IIb刍3 and NHE1 occurred in intracellular vesicle.
iii. Microtubule did not involve in molecular interaction between integrin脉IIb刍3 and NHE1 occurring in intracellular vesicle.
iv. Lipid raft integrity was involved in molecular interaction between integrin脉IIb刍3 and NHE1 occurring in intracellular vesicle.
5. Role of lipid microdomains in mediating the recruitment of NHE1 and NCX1 to the membrane.
1. Lipid raft colocalized with NHE1 and NCX1 in plasma membrane when CHO脉IIb刍3 grown on fibrinogen/rhodostomin substrates.
2. The recruitment of NHE1 and NCX1 to plasma membrane dependent on lipid raft integrity.
3. NHE1 and NCX1 present in lipid raft microdomain (DRM, Detergent Resistance Membrane)
4. NHE1/NCX1 interacted with lipid raft marker but not with non-lipid raft marker
Discussion……………………………………………………………...58
The novel mechanism of the combined effect of the NHE1 and NCX1 in integrin-mediated calcium oscillation
The physical binding between integrin and exchangers were demonstrated using FLIM-FRET
The novel finding in NHE1/NCX1 targeting and reinternalized through lipid rafts mechanism
Integrin脉IIb刍3 induced the intermolecular binding between integrin脉IIb刍3 and NHE1/NCX1 through kinase dependent signalling.
Significance of the combined effect of NHE1 and NCX1 in various cellular activities
References……………………………………………………………...63
Appendix……………………………………………………………….80
Table…………………………………………………………………...98
Figure…………………………………………………………………..99
References
Aharonovitz, O., and Granot, Y. (1996). Stimulation of mitogen-activated protein kinase and Na+/H+ exchanger in human platelets. Differential effect of phorbol ester and vasopressin. J Biol Chem 271, 16494-16499.
Allen, D.G., and Xiao, X.H. (2003). Role of the cardiac Na+/H+ exchanger during ischemia and reperfusion. Cardiovasc Res 57, 934-941.
Alonso, M.T., Sanchez, A., and Garcia-Sancho, J. (1989). Effects of sodium removal on calcium mobilization and dense granule secretion induced by thrombin in human platelets. Biochim Biophys Acta 981, 367-370.
Altieri, D.C., Agbanyo, F.R., Plescia, J., Ginsberg, M.H., Edgington, T.S., and Plow, E.F. (1990). A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD11b/CD18). J Biol Chem 265, 12119-12122.
Andrews, R.K., and Berndt, M.C. (2004). Platelet physiology and thrombosis. Thromb Res 114, 447-453.
Banga, H.S., Simons, E.R., Brass, L.F., and Rittenhouse, S.E. (1986). Activation of phospholipases A and C in human platelets exposed to epinephrine: role of glycoproteins IIb/IIIa and dual role of epinephrine. Proc Natl Acad Sci U S A 83, 9197-9201.
Berridge, M.J. (2006). Calcium microdomains: organization and function. Cell Calcium 40, 405-412.
Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4, 517-529.
Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1, 11-21.
Bianchini, L., L'Allemain, G., and Pouyssegur, J. (1997). The p42/p44 mitogen-activated protein kinase cascade is determinant in mediating activation of the Na+/H+ exchanger (NHE1 isoform) in response to growth factors. J Biol Chem 272, 271-279.
Blackmore, P.F., Bocckino, S.B., Waynick, L.E., and Exton, J.H. (1985). Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride. J Biol Chem 260, 14477-14483.
Bodin, S., Soulet, C., Tronchere, H., Sie, P., Gachet, C., Plantavid, M., and Payrastre, B. (2005). Integrin-dependent interaction of lipid rafts with the actin cytoskeleton in activated human platelets. J Cell Sci 118, 759-769.
Bodin, S., Tronchere, H., and Payrastre, B. (2003). Lipid rafts are critical membrane domains in blood platelet activation processes. Biochim Biophys Acta 1610, 247-257.
Boitano, S., Dirksen, E.R., and Sanderson, M.J. (1992). Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258, 292-295.
Bonventre, J.V., Weber, P.C., and Gronich, J.H. (1988). PAF and PDGF increase cytosolic [Ca2+] and phospholipase activity in mesangial cells. Am J Physiol 254, F87-94.
Bootman, M.D., Collins, T.J., Peppiatt, C.M., Prothero, L.S., MacKenzie, L., De Smet, P., Travers, M., Tovey, S.C., Seo, J.T., Berridge, M.J., et al. (2001). Calcium signalling--an overview. Semin Cell Dev Biol 12, 3-10.
Borin, M.L., Pinelis, V.G., Azizova, O.A., Kudinov, Y.V., Markov, C.M., Cragoe, E.J., and Khodorov, B.I. (1989). Na+/H+ exchange in PAF-stimulated platelets. J Lipid Mediat 1, 257-272.
Borle, A.B., and Bender, C. (1991). Effects of pH on Ca2+i, Na+i, and pHi of MDCK cells: Na(+)-Ca2+ and Na(+)-H+ antiporter interactions. Am J Physiol 261, C482-489.
Bose, R., Li, Y., and Roberts, D. (2002). Na+/Ca2+ exchange in activated and nonactivated human platelets. Ann N Y Acad Sci 976, 350-353.
Bossuyt, J., Taylor, B.E., James-Kracke, M., and Hale, C.C. (2002). Evidence for cardiac sodium-calcium exchanger association with caveolin-3. FEBS Lett 511, 113-117.
Brown, D.A., and London, E. (1998). Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14, 111-136.
Brown, D.A., and London, E. (1998). Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164, 103-114.
Bullis, B.L., Li, X., Singh, D.N., Berthiaume, L.G., and Fliegel, L. (2002). Properties of the Na+/H+ exchanger protein. Detergent-resistant aggregation and membrane microdistribution. Eur J Biochem 269, 4887-4895.
Camors, E., Charue, D., Trouve, P., Monceau, V., Loyer, X., Russo-Marie, F., and Charlemagne, D. (2006). Association of annexin A5 with Na+/Ca2+ exchanger and caveolin-3 in non-failing and failing human heart. J Mol Cell Cardiol 40, 47-55.
Cardone, R.A., Casavola, V., and Reshkin, S.J. (2005). The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5, 786-795.
Chakrabarti, R. (2006). Calcium signaling in non-excitable cells: Ca2+ release and influx are independent events linked to two plasma membrane Ca2+ entry channels. J Cell Biochem 99, 1503-1516.
Chang, H.H., Chang, C.P., Chang, J.C., Dung, S.Z., and Lo, S.J. (1997). Application of Recombinant Rhodostomin in Studying Cell Adhesion. J Biomed Sci 4, 235-243.
Chang, H.H., Hu, S.T., Huang, T.F., Chen, S.H., Lee, Y.H., and Lo, S.J. (1993). Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun 190, 242-249.
Chang, H.H., Lin, C.H., and Lo, S.J. (1999). Recombinant rhodostomin substrates induce transformation and active calcium oscillation in human platelets. Exp Cell Res 250, 387-400.
Chang, H.H., and Lo, S.J. (1998). Full-spreading platelets induced by the recombinant rhodostomin are via binding to integrins and correlated with FAK phosphorylation. Toxicon 36, 1087-1099.
Chang, H.H., Tsai, W.J., and Lo, S.J. (1997). Glutathione S-transferase-rhodostomin fusion protein inhibits platelet aggregation and induces platelet shape change. Toxicon 35, 195-204.
Chang, H.J., Sheu, S.Y., and Lo, S.J. (1999). Expression of foreign antigens on the surface of Escherichia coli by fusion to the outer membrane protein traT. J Biomed Sci 6, 64-70.
Chen, Y., Takizawa, N., Crowley, J.L., Oh, S.W., Gatto, C.L., Kambara, T., Sato, O., Li, X.D., Ikebe, M., and Luna, E.J. (2003). F-actin and myosin II binding domains in supervillin. J Biol Chem 278, 46094-46106.
Coller, B.S., and Shattil, S.J. (2008). The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 112, 3011-3025.
Connolly, T.M., and Limbird, L.E. (1983). Removal of extraplatelet Na+ eliminates indomethacin-sensitive secretion from human platelets stimulated by epinephrine, ADP, and thrombin. Proc Natl Acad Sci U S A 80, 5320-5324.
Coppolino, M.G., Woodside, M.J., Demaurex, N., Grinstein, S., St-Arnaud, R., and Dedhar, S. (1997). Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386, 843-847.
Crompton, M., Moser, R., Ludi, H., and Carafoli, E. (1978). The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem 82, 25-31.
del Pozo, M.A., Balasubramanian, N., Alderson, N.B., Kiosses, W.B., Grande-Garcia, A., Anderson, R.G., and Schwartz, M.A. (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol 7, 901-908.
Demaurex, N., Downey, G.P., Waddell, T.K., and Grinstein, S. (1996). Intracellular pH regulation during spreading of human neutrophils. J Cell Biol 133, 1391-1402.
Denker, S.P., and Barber, D.L. (2002). Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol 159, 1087-1096.
DiPolo, R., and Beauge, L. (2006). Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol Rev 86, 155-203.
Dorahy, D.J., Lincz, L.F., Meldrum, C.J., and Burns, G.F. (1996). Biochemical isolation of a membrane microdomain from resting platelets highly enriched in the plasma membrane glycoprotein CD36. Biochem J 319 ( Pt 1), 67-72.
Doyle, V.M., and Ruegg, U.T. (1985). Lack of evidence for voltage dependent calcium channels on platelets. Biochem Biophys Res Commun 127, 161-167.
Dreval, V., Dieterich, P., Stock, C., and Schwab, A. (2005). The role of Ca2+ transport across the plasma membrane for cell migration. Cell Physiol Biochem 16, 119-126.
D'Souza, S., Garcia-Cabado, A., Yu, F., Teter, K., Lukacs, G., Skorecki, K., Moore, H.P., Orlowski, J., and Grinstein, S. (1998). The epithelial sodium-hydrogen antiporter Na+/H+ exchanger 3 accumulates and is functional in recycling endosomes. J Biol Chem 273, 2035-2043.
Eigel, B.N., and Hadley, R.W. (2001). Antisense inhibition of Na+/Ca2+ exchange during anoxia/reoxygenation in ventricular myocytes. Am J Physiol Heart Circ Physiol 281, H2184-2190.
Elliott, A.C. (2001). Recent developments in non-excitable cell calcium entry. Cell Calcium 30, 73-93.
Fliegel, L. (2005). The Na+/H+ exchanger isoform 1. Int J Biochem Cell Biol 37, 33-37.
Fliegel, L., Walsh, M.P., Singh, D., Wong, C., and Barr, A. (1992). Phosphorylation of the C-terminal domain of the Na+/H+ exchanger by Ca2+/calmodulin-dependent protein kinase II. Biochem J 282 ( Pt 1), 139-145.
Ghigo, D., Bussolino, F., Garbarino, G., Heller, R., Turrini, F., Pescarmona, G., Cragoe, E.J., Jr., Pegoraro, L., and Bosia, A. (1988). Role of Na+/H+ exchange in thrombin-induced platelet-activating factor production by human endothelial cells. J Biol Chem 263, 19437-19446.
Ghigo, D., Treves, S., Turrini, F., Pannocchia, A., Pescarmona, G., and Bosia, A. (1988). Role of Na+/H+ exchange in thrombin- and arachidonic acid-induced Ca2+ influx in platelets. Biochim Biophys Acta 940, 141-148.
Ghukasyan, V., Hsu, Y.Y., Kung, S.H., and Kao, F.J. (2007). Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells. J Biomed Opt 12, 024016.
Gillespie, J.I., Otun, H., Greenwell, J.R., and Dunlop, W. (1992). Evidence for Na(+)-Ca2+ exchange and Ca(2+)-induced Ca2+ release in a cultured vascular smooth muscle cell line from the rat. Exp Physiol 77, 141-152.
Ginsberg, M.H., Du, X., and Plow, E.F. (1992). Inside-out integrin signalling. Curr Opin Cell Biol 4, 766-771.
Gousset, K., Wolkers, W.F., Tsvetkova, N.M., Oliver, A.E., Field, C.L., Walker, N.J., Crowe, J.H., and Tablin, F. (2002). Evidence for a physiological role for membrane rafts in human platelets. Journal of Cellular Physiology 190, 117-128.
Heijnen, H.F., Van Lier, M., Waaijenborg, S., Ohno-Iwashita, Y., Waheed, A.A., Inomata, M., Gorter, G., Mobius, W., Akkerman, J.W., and Slot, J.W. (2003). Concentration of rafts in platelet filopodia correlates with recruitment of c-Src and CD63 to these domains. J Thromb Haemost 1, 1161-1173.
Henley, J., and Poo, M.M. (2004). Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14, 320-330.
Hiltbold, E.M., Poloso, N.J., and Roche, P.A. (2003). MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse. J Immunol 170, 1329-1338.
Horinouchi, T., Miyake, Y., Nishiya, T., Nishimoto, A., Morishima, S., Muramatsu, I., and Miwa, S. (2008). Functional role of Na+/H+ exchanger in Ca2+ influx mediated via human endothelin type A receptor stably expressed in Chinese hamster ovary cells. J Pharmacol Sci 107, 456-459.
Horne, W.C., and Simons, E.R. (1978). Effects of amiloride on the response of human platelets to bovine alphathrombin. Thromb Res 13, 599-607.
Hsieh, C.F., Chang, B.J., Pai, C.H., Chen, H.Y., Tsai, J.W., Yi, Y.H., Chiang, Y.T., Wang, D.W., Chi, S., Hsu, L., et al. (2006). Stepped changes of monovalent ligand-binding force during ligand-induced clustering of integrin alphaIIB beta3. J Biol Chem 281, 25466-25474.
Hynes, R.O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11-25.
Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.
Hynes, R.O., George, E.L., Georges, E.N., Guan, J.L., Rayburn, H., and Yang, J.T. (1992). Toward a genetic analysis of cell-matrix adhesion. Cold Spring Harb Symp Quant Biol 57, 249-258.
Iwamoto, T., and Kita, S. (2006). Hypertension, Na+/Ca2+ exchanger, and Na+, K+-ATPase. Kidney Int 69, 2148-2154.
Iwamoto, T., Kita, S., Zhang, J., Blaustein, M.P., Arai, Y., Yoshida, S., Wakimoto, K., Komuro, I., and Katsuragi, T. (2004). Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat Med 10, 1193-1199.
Iwamoto, T., Pan, Y., Wakabayashi, S., Imagawa, T., Yamanaka, H.I., and Shigekawa, M. (1996). Phosphorylation-dependent regulation of cardiac Na+/Ca2+ exchanger via protein kinase C. J Biol Chem 271, 13609-13615.
Jackson, S.P. (2007). The growing complexity of platelet aggregation. Blood 109, 5087-5095.
Jackson, S.P., Nesbitt, W.S., and Kulkarni, S. (2003). Signaling events underlying thrombus formation. J Thromb Haemost 1, 1602-1612.
Jeffs, G.J., Meloni, B.P., Bakker, A.J., and Knuckey, N.W. (2007). The role of the Na(+)/Ca(2+) exchanger (NCX) in neurons following ischaemia. J Clin Neurosci 14, 507-514.
Jen, C.J., Chen, H.I., Lai, K.C., and Usami, S. (1996). Changes in cytosolic calcium concentrations and cell morphology in single platelets adhered to fibrinogen-coated surface under flow. Blood 87, 3775-3782.
Kandasamy, R.A., Yu, F.H., Harris, R., Boucher, A., Hanrahan, J.W., and Orlowski, J. (1995). Plasma membrane Na+/H+ exchanger isoforms (NHE-1, -2, and -3) are differentially responsive to second messenger agonists of the protein kinase A and C pathways. J Biol Chem 270, 29209-29216.
Kemp, G., Young, H., and Fliegel, L. (2008). Structure and function of the human Na(+)/H(+) exchanger isoform 1. Channels (Austin) 2.
Kieffer, N., and Phillips, D.R. (1990). Platelet membrane glycoproteins: functions in cellular interactions. Annu Rev Cell Biol 6, 329-357.
Krauss, K., and Altevogt, P. (1999). Integrin leukocyte function-associated antigen-1-mediated cell binding can be activated by clustering of membrane rafts. J Biol Chem 274, 36921-36927.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
Lai, E.C. (2003). Lipid rafts make for slippery platforms. J Cell Biol 162, 365-370.
Lencesova, L., O'Neill, A., Resneck, W.G., Bloch, R.J., and Blaustein, M.P. (2004). Plasma membrane-cytoskeleton-endoplasmic reticulum complexes in neurons and astrocytes. J Biol Chem 279, 2885-2893.
Li, L., Watanabe, Y., Matsuoka, I., and Kimura, J. (2008). Acidic preconditioning inhibits Na+/H+ and Na+/Ca2+ exchanger interaction via PKCepsilon in guinea-pig ventricular myocytes. J Pharmacol Sci 107, 309-316.
Lian, W.N., Wu, T.W., Dao, R.L., Chen, Y.J., and Lin, C.H. (2006). Deglycosylation of Na+/K+-ATPase causes the basolateral protein to undergo apical targeting in polarized hepatic cells. J Cell Sci 119, 11-22.
Lin, C.H., Thompson, C.A., and Forscher, P. (1994). Cytoskeletal reorganization underlying growth cone motility. Curr Opin Neurobiol 4, 640-647.
Lisman, T., Weeterings, C., and de Groot, P.G. (2005). Platelet aggregation: involvement of thrombin and fibrin(ogen). Front Biosci 10, 2504-2517.
Liu, P.S., and Kao, L.S. (1990). Na(+)-dependent Ca2+ influx in bovine adrenal chromaffin cells. Cell Calcium 11, 573-579.
Liu, P.S., and Kao, L.S. (1990). Na(+)-dependent Ca2+ influx in bovine adrenal chromaffin cells. Cell Calcium 11, 573-579.
Liu, S., Calderwood, D.A., and Ginsberg, M.H. (2000). Integrin cytoplasmic domain-binding proteins. J Cell Sci 113 ( Pt 20), 3563-3571.
Loftus, J.C., Smith, J.W., and Ginsberg, M.H. (1994). Integrin-mediated cell adhesion: the extracellular face. J Biol Chem 269, 25235-25238.
Lorenz, M., Hellige, N., Rieder, P., Kinkel, H.T., Trimpert, C., Staudt, A., Felix, S.B., Baumann, G., Stangl, K., and Stangl, V. (2008). Positive inotropic effects of epigallocatechin-3-gallate (EGCG) involve activation of Na+/H+ and Na+/Ca2+ exchangers. Eur J Heart Fail 10, 439-445.
Luzzatto, G., Kroll, M.H., Zavoico, G.B., and Schafer, A.I. (1991). Regulation of the phosphoinositide cycle by Na+/H+ exchange and intracellular pH in human platelets. Biochim Biophys Acta 1084, 78-86.
Lytton, J. (2007). Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J 406, 365-382.
Ma, Y.Q., Qin, J., and Plow, E.F. (2007). Platelet integrin alpha(IIb)beta(3): activation mechanisms. J Thromb Haemost 5, 1345-1352.
Mahaut-Smith, M.P., Sage, S.O., and Rink, T.J. (1990). Receptor-activated single channels in intact human platelets. J Biol Chem 265, 10479-10483.
Maly, K., Strese, K., Kampfer, S., Ueberall, F., Baier, G., Ghaffari-Tabrizi, N., Grunicke, H.H., and Leitges, M. (2002). Critical role of protein kinase C alpha and calcium in growth factor induced activation of the Na(+)/H(+) exchanger NHE1. FEBS Lett 521, 205-210.
Mangin, P., Yuan, Y., Goncalves, I., Eckly, A., Freund, M., Cazenave, J.P., Gachet, C., Jackson, S.P., and Lanza, F. (2003). Signaling role for phospholipase C gamma 2 in platelet glycoprotein Ib alpha calcium flux and cytoskeletal reorganization. Involvement of a pathway distinct from FcR gamma chain and Fc gamma RIIA. J Biol Chem 278, 32880-32891.
Maxwell, K., Scott, J., Omelchenko, A., Lukas, A., Lu, L., Lu, Y., Hnatowich, M., Philipson, K.D., and Hryshko, L.V. (1999). Functional role of ionic regulation of Na+/Ca2+ exchange assessed in transgenic mouse hearts. Am J Physiol 277, H2212-2221.
Moolenaar, W.H., Tertoolen, L.G., and de Laat, S.W. (1984). Phorbol ester and diacylglycerol mimic growth factors in raising cytoplasmic pH. Nature 312, 371-374.
Mosesson, M.W. (2005). Fibrinogen and fibrin structure and functions. J Thromb Haemost 3, 1894-1904.
Mouritsen, O.G., and Jorgensen, K. (1997). Small-scale lipid-membrane structure: simulation versus experiment. Curr Opin Struct Biol 7, 518-527.
Mukherjee, S., and Maxfield, F.R. (2000). Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1, 203-211.
Nass, R., and Rao, R. (1998). Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast. Implications for vacuole biogenesis. J Biol Chem 273, 21054-21060.
Nichols, B. (2003). Caveosomes and endocytosis of lipid rafts. J Cell Sci 116, 4707-4714.
Nieuwland, R., Siffert, W., and Akkerman, J.W. (1993). Effect of epinephrine on the regulation of Na+/H+ exchange in human platelets. Biochim Biophys Acta 1148, 185-190.
Noel, J., Roux, D., and Pouyssegur, J. (1996). Differential localization of Na+/H+ exchanger isoforms (NHE1 and NHE3) in polarized epithelial cell lines. J Cell Sci 109 ( Pt 5), 929-939.
Orlov, S.N., Adragna, N.C., Adarichev, V.A., and Hamet, P. (1999). Genetic and biochemical determinants of abnormal monovalent ion transport in primary hypertension. Am J Physiol 276, C511-536.
Petrie, R.J., Schnetkamp, P.P., Patel, K.D., Awasthi-Kalia, M., and Deans, J.P. (2000). Transient translocation of the B cell receptor and Src homology 2 domain-containing inositol phosphatase to lipid rafts: evidence toward a role in calcium regulation. J Immunol 165, 1220-1227.
Phillips, D.R., Charo, I.F., and Scarborough, R.M. (1991). GPIIb-IIIa: the responsive integrin. Cell 65, 359-362.
Pipili, E. (1985). Platelet membrane potential: simultaneous measurement of diSC3(5) fluorescence and optical density. Thromb Haemost 54, 645-649.
Pollock, W.K., and Rink, T.J. (1986). Thrombin and ionomycin can raise platelet cytosolic Ca2+ to micromolar levels by discharge of internal Ca2+ stores: studies using fura-2. Biochem Biophys Res Commun 139, 308-314.
Putney, L.K., Denker, S.P., and Barber, D.L. (2002). The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annu Rev Pharmacol Toxicol 42, 527-552.
Rengasamy, A., Soura, S., and Feinberg, H. (1987). Platelet Ca2+ homeostasis: Na+-Ca2+ exchange in plasma membrane vesicles. Thromb Haemost 57, 337-340.
Rinder, C.S., Student, L.A., Bonan, J.L., Rinder, H.M., and Smith, B.R. (1993). Aspirin does not inhibit adenosine diphosphate-induced platelet alpha-granule release. Blood 82, 505-512.
Roberts, D.E., and Bose, R. (2002). Reverse mode Na+/Ca2+ exchange in the collagen activation of human platelets. Ann N Y Acad Sci 976, 345-349.
Roberts, D.E., McNicol, A., and Bose, R. (2004). Mechanism of collagen activation in human platelets. J Biol Chem 279, 19421-19430.
Roos, E., and Roossien, F.F. (1987). Involvement of leukocyte function-associated antigen-1 (LFA-1) in the invasion of hepatocyte cultures by lymphoma and T-cell hybridoma cells. J Cell Biol 105, 553-559.
Rosskopf, D. (1999). Sodium-hydrogen exchange and platelet function. J Thromb Thrombolysis 8, 15-24.
Ruknudin, A.M., and Lakatta, E.G. (2007). The regulation of the Na/Ca exchanger and plasmalemmal Ca2+ ATPase by other proteins. Ann N Y Acad Sci 1099, 86-102.
Sage, S.O., and Rink, T.J. (1986). Effects of ionic substitution on [Ca2+]i rises evoked by thrombin and PAF in human platelets. Eur J Pharmacol 128, 99-107.
Salzman, E.W., and Ware, J.A. (1989). Ionized calcium as an intracellular messenger in blood platelets. Prog Hemost Thromb 9, 177-202.
Samson, J., Stelmach, H., and Tomasiak, M. (2001). The importance of Na+/H+ exchanger for the generation of procoagulant activity by porcine blood platelets. Platelets 12, 436-442.
Sardet, C., Franchi, A., and Pouyssegur, J. (1989). Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell 56, 271-280.
Schaeffer, J., and Blaustein, M.P. (1989). Platelet free calcium concentrations measured with fura-2 are influenced by the transmembrane sodium gradient. Cell Calcium 10, 101-113.
Schroeder, R., London, E., and Brown, D. (1994). Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A 91, 12130-12134.
Schulze, D.H., Muqhal, M., Lederer, W.J., and Ruknudin, A.M. (2003). Sodium/calcium exchanger (NCX1) macromolecular complex. J Biol Chem 278, 28849-28855.
Shiraga, M., Tomiyama, Y., Honda, S., Suzuki, H., Kosugi, S., Tadokoro, S., Kanakura, Y., Tanoue, K., Kurata, Y., and Matsuzawa, Y. (1998). Involvement of Na+/Ca2+ exchanger in inside-out signaling through the platelet integrin IIbbeta3. Blood 92, 3710-3720.
Shrimpton, C.N., Borthakur, G., Larrucea, S., Cruz, M.A., Dong, J.F., and Lopez, J.A. (2002). Localization of the adhesion receptor glycoprotein Ib-IX-V complex to lipid rafts is required for platelet adhesion and activation. J Exp Med 196, 1057-1066.
Siffert, W., and Akkerman, J.W. (1987). Activation of sodium-proton exchange is a prerequisite for Ca2+ mobilization in human platelets. Nature 325, 456-458.
Siffert, W., Gengenbach, S., and Scheid, P. (1986). Inhibition of platelet aggregation by amiloride. Thromb Res 44, 235-240.
Siffert, W., Muckenhoff, K., and Scheid, P. (1984). Evidence for a role of NA+/H+ exchange in platelets activated with calcium-ionophore A 23187. Biochem Biophys Res Commun 125, 1123-1128.
Siffert, W., Siffert, G., Scheid, P., and Akkerman, J.W. (1990). Na+/H+ exchange modulates Ca2+ mobilization in human platelets stimulated by ADP and the thromboxane mimetic U 46619. J Biol Chem 265, 719-725.
Silvius, J.R., del Giudice, D., and Lafleur, M. (1996). Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry 35, 15198-15208.
Simons, K., and Ehehalt, R. (2002). Cholesterol, lipid rafts, and disease. J Clin Invest 110, 597-603.
Simons, K., and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569-572.
Simons, K., and Toomre, D. (2000). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31-39.
Singer, S.J., and Nicolson, G.L. (1972). The fluid mosaic model of the structure of cell membranes. Science 175, 720-731.
Sjaastad, M.D., Lewis, R.S., and Nelson, W.J. (1996). Mechanisms of integrin-mediated calcium signaling in MDCK cells: regulation of adhesion by IP3- and store-independent calcium influx. Mol Biol Cell 7, 1025-1041.
Stanbouly, S., Kirshenbaum, L.A., Jones, D.L., and Karmazyn, M. (2008). Sodium hydrogen exchange 1 (NHE-1) regulates connexin 43 expression in cardiomyocytes via reverse mode sodium calcium exchange and c-Jun NH2-terminal kinase-dependent pathways. J Pharmacol Exp Ther 327, 105-113.
Subczynski, W.K., and Kusumi, A. (2003). Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochimica et Biophysica Acta 2, 231-243.
Sun, D.S., Lo, S.J., Lin, C.H., Yu, M.S., Huang, C.Y., Chen, Y.F., and Chang, H.H. (2005). Calcium oscillation and phosphatidylinositol 3-kinase positively regulate integrin alpha(IIb)beta3-mediated outside-in signaling. J Biomed Sci 12, 321-333.
Sweatt, J.D., Connolly, T.M., Cragoe, E.J., and Limbird, L.E. (1986). Evidence that Na+/H+ exchange regulates receptor-mediated phospholipase A2 activation in human platelets. J Biol Chem 261, 8667-8673.
Sweatt, J.D., Johnson, S.L., Cragoe, E.J., and Limbird, L.E. (1985). Inhibitors of Na+/H+ exchange block stimulus-provoked arachidonic acid release in human platelets. Selective effects on platelet activation by epinephrine, ADP, and lower concentrations of thrombin. J Biol Chem 260, 12910-12919.
Sweatt, J.D., Schwartzberg, M.S., Frazer, M., Cragoe, E.J., Jr., Blair, I.A., Reed, P.W., and Limbird, L.E. (1987). Evidence for a role for Na+-H+ exchange in activation of human platelets by PAF. Circ Res 61, II6-11.
Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F., and Hynes, R.O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271-282.
Taylor, C.W. (1998). Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. Biochim Biophys Acta 1436, 19-33.
Tominaga, T., and Barber, D.L. (1998). Na-H exchange acts downstream of RhoA to regulate integrin-induced cell adhesion and spreading. Mol Biol Cell 9, 2287-2303.
Van Laethem, F., and Leo, O. (2002). Membrane lipid rafts: new targets for immunoregulation. Curr Mol Med 2, 557-570.
Verkhratsky, A., and Shmigol, A. (1996). Calcium-induced calcium release in neurones. Cell Calcium 19, 1-14.
Vogt, A.B., Spindeldreher, S., and Kropshofer, H. (2002). Clustering of MHC-peptide complexes prior to their engagement in the immunological synapse: lipid raft and tetraspan microdomains. Immunol Rev 189, 136-151.
Voyno-Yasenetskaya, T., Conklin, B.R., Gilbert, R.L., Hooley, R., Bourne, H.R., and Barber, D.L. (1994). G alpha 13 stimulates Na-H exchange. J Biol Chem 269, 4721-4724.
Wang, S.Q., Song, L.S., Lakatta, E.G., and Cheng, H. (2001). Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410, 592-596.
Wang, Y., and Chien, S. (2007). Analysis of integrin signaling by fluorescence resonance energy transfer. Methods Enzymol 426, 177-201.
Weisel, J.W. (2005). Fibrinogen and fibrin. Adv Protein Chem 70, 247-299.
Xie, X., Wu, G., Lu, Z.H., Rohowsky-Kochan, C., and Ledeen, R.W. (2004). Presence of sodium-calcium exchanger/GM1 complex in the nuclear envelope of non-neural cells: nature of exchanger-GM1 interaction. Neurochem Res 29, 2135-2146.
Ylanne, J., Chen, Y., O'Toole, T.E., Loftus, J.C., Takada, Y., and Ginsberg, M.H. (1993). Distinct functions of integrin alpha and beta subunit cytoplasmic domains in cell spreading and formation of focal adhesions. J Cell Biol 122, 223-233.
Zachos, N.C., Tse, M., and Donowitz, M. (2005). Molecular physiology of intestinal Na+/H+ exchange. Annu Rev Physiol 67, 411-443.
Zhang, W., and Samelson, L.E. (2000). The role of membrane-associated adaptors in T cell receptor signalling. Semin Immunol 12, 35-41.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top