跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡慈芳
研究生(外文):Tzu-Fang Hu
論文名稱:卡波西氏肉瘤病毒LANA引起細胞移動機制之探討:著重在microRNAs層面
論文名稱(外文):Mechanistic analysis on KSHV LANA-induced cell migration: Emphasize on microRNAs
指導教授:王學偉王學偉引用關係蔡錦華蔡錦華引用關係林素芳林素芳引用關係
指導教授(外文):Hsei-Wei WangChing-Hwa TsaiSu-Fang Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:59
中文關鍵詞:卡波西氏肉瘤病毒細胞移動
外文關鍵詞:KSHVLANAmicroRNAmigration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
卡波西氏肉瘤病毒(KSHV)又稱人類第八型疱疹病毒(HHV8),為一種可造成人類癌症的病毒,並與Kaposi’s sarcoma、primary effusion lymphoma 以及 muticentric Castleman’s disease 等疾病相關。目前已知KSHV 感染primary human umbilical vein endothelial cells (HUVECs) 會使得其MMP-1、MMP-2以及MMP-9的表現量增加,使得HUVECs 的侵犯能力增加,但是對於是由哪些病毒基因所調控與其相關機制仍未清楚。KSHV感染宿主後大多維持在潛伏期,因此病毒的潛伏期基因在細胞移動機制中可能扮演重要之角色。LANA 為具有多功能的蛋白,對於KSHV 的複製以及潛伏時期維持KSHV episomal DNA相當重要。LANA 也可以藉由調控轉錄因子來調控基因的表現。本研究發現LANA藉由抑制miR-221以及miR-222的表現來促進內皮細胞移動的能力。此外KSHV感染初代淋巴內皮細胞(LECs)與血管內皮細胞(BECs),也觀察到miR-221以及miR-222的表現量有下降的現象。我們利用gene expression microarray analysis與miRTar prediction web tool,找到miR-221調控ETS2與NDRG1基因,以及miR-222調控NDRG1基因。而且於KSHV感染初代淋巴內皮細胞(LECs)與血管內皮細胞(BECs)中同樣也發現ETS2與NDRG1的表現上升,所以ETS2與NDRG1有可能參與了調控內皮細胞移動之機制。因此KSHV 可能藉由改變細胞microRNA與其下游基因之表現,促使血管新生與腫瘤轉移之現象。針對KSHV所調控之細胞microRNA或其下游目標基因為標的,可能可以成為新一代治療KSHV相關腫瘤或抑制血管新生的方法。
Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV8), is a human oncogenic virus and the causative agent of Kaposi’s sarcoma, primary effusion lymphoma and the multicentric Castleman’s disease. KSHV enhanced the migration and invasiveness of primary human umbilical vein endothelial cells (HUVECs) by up-regulating cellular genes such as MMP-1, -2 and MMP-9. However, the involving viral protein and underlying mechanism is still largely unclear. Since KSHV mainly maintains latency after infection, some latent genes may play vital role in the regulation of cell motility. LANA is a multifunctional protein that is essential for the replication and maintenance of KSHV episomal DNA during latent infection. LANA can also alter gene expression through regulation of a variety of transcription factors. In this study, we demonstrate LANA can increase endothelial cell motility through down-regulation of miR-221 and miR-222 expression. The down-reguation of miR-221 and miR-222 is also found in KSHV-infected lymphatic endothelial cells (LECs) and blood vessel endothelial cells (BECs). We further identify two candidate miR-221 downstream targets (ETS2 and NDRG1) and one candidate miR-222 downstream targets (NDRG1) by gene expression microarray analysis and miRTar prediction web tool. These two candidates are up-regulated in KSHV-infected LECs and BECs and may be involved in regulation of endothelial cell motility. Therefore, KSHV may induce angiogenesis and tumor metastasis through altering cellular microRNA (miRNA) expression. Targeting KSHV-regulated cellular miRNAs or their downstream targets may represent a novel approach for treating KSHV-associated neoplasia or anti-angiogenesis.
1. 英文摘要……………………………………………………………………… 1
2. 中文摘要……………………………………………………………………… 2
3. 緒論…………………………………………………………………………… 3
4. 材料與方法……………………………………………………………………11
5. 結果……………………………………………………………………………20
6. 討論……………………………………………………………………………26
7. 參考文獻………………………………………………………………………33
8. 圖表……………………………………………………………………………41
9. 附錄……………………………………………………………………………57
An,F.Q., Folarin,H.M., Compitello,N., Roth,J., Gerson,S.L., McCrae,K.R., Fakhari,F.D., Dittmer,D.P., and Renne,R. (2006). Long-term-infected telomerase-immortalized endothelial cells: a model for Kaposi's sarcoma-associated herpesvirus latency in vitro and in vivo. J. Virol. 80, 4833-4846.
An,J., Lichtenstein,A.K., Brent,G., and Rettig,M.B. (2002). The Kaposi sarcoma-associated herpesvirus (KSHV) induces cellular interleukin 6 expression: role of the KSHV latency-associated nuclear antigen and the AP1 response element. Blood 99, 649-654.
An,J., Sun,Y., and Rettig,M.B. (2004). Transcriptional coactivation of c-Jun by the KSHV-encoded LANA. Blood 103, 222-228.
Ballestas,M.E., Chatis,P.A., and Kaye,K.M. (1999). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641-644.
Bandyopadhyay,S., Pai,S.K., Hirota,S., Hosobe,S., Takano,Y., Saito,K., Piquemal,D., Commes,T., Watabe,M., Gross,S.C., Wang,Y., Ran,S., and Watabe,K. (2004). Role of the putative tumor metastasis suppressor gene Drg-1 in breast cancer progression. Oncogene 23, 5675-5681.
Bubman,D., Guasparri,I., and Cesarman,E. (2007). Deregulation of c-Myc in primary effusion lymphoma by Kaposi's sarcoma herpesvirus latency-associated nuclear antigen. Oncogene 26, 4979-4986.
Chang,Y., Cesarman,E., Pessin,M.S., Lee,F., Culpepper,J., Knowles,D.M., and Moore,P.S. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865-1869.
Chen,C., Ridzon,D.A., Broomer,A.J., Zhou,Z., Lee,D.H., Nguyen,J.T., Barbisin,M., Xu,N.L., Mahuvakar,V.R., Andersen,M.R., Lao,K.Q., Livak,K.J., and Guegler,K.J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179.
Chua,M.S., Sun,H., Cheung,S.T., Mason,V., Higgins,J., Ross,D.T., Fan,S.T., and So,S. (2007). Overexpression of NDRG1 is an indicator of poor prognosis in hepatocellular carcinoma. Mod. Pathol. 20, 76-83.
Collins,C.M., Medveczky,M.M., Lund,T., and Medveczky,P.G. (2002). The terminal repeats and latency-associated nuclear antigen of herpesvirus saimiri are essential for episomal persistence of the viral genome. J. Gen. Virol. 83, 2269-2278.
Cook,P.M., Whitby,D., Calabro,M.L., Luppi,M., Kakoola,D.N., Hjalgrim,H., Ariyoshi,K., Ensoli,B., Davison,A.J., and Schulz,T.F. (1999). Variability and evolution of Kaposi's sarcoma-associated herpesvirus in Europe and Africa. International Collaborative Group. AIDS 13, 1165-1176.
Dews,M., Homayouni,A., Yu,D., Murphy,D., Sevignani,C., Wentzel,E., Furth,E.E., Lee,W.M., Enders,G.H., Mendell,J.T., and Thomas-Tikhonenko,A. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet. 38, 1060-1065.
Donaldson,L.W., Petersen,J.M., Graves,B.J., and McIntosh,L.P. (1994). Secondary structure of the ETS domain places murine Ets-1 in the superfamily of winged helix-turn-helix DNA-binding proteins. Biochemistry 33, 13509-13516.
Ensoli,B., Barillari,G., Salahuddin,S.Z., Gallo,R.C., and Wong-Staal,F. (1990). Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 345, 84-86.
Fejer,G., Medveczky,M.M., Horvath,E., Lane,B., Chang,Y., and Medveczky,P.G. (2003). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus interacts preferentially with the terminal repeats of the genome in vivo and this complex is sufficient for episomal DNA replication. J. Gen. Virol. 84, 1451-1462.
Fornari,F., Gramantieri,L., Ferracin,M., Veronese,A., Sabbioni,S., Calin,G.A., Grazi,G.L., Giovannini,C., Croce,C.M., Bolondi,L., and Negrini,M. (2008). MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27, 5651-5661.
Fujimuro,M. and Hayward,S.D. (2003). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus manipulates the activity of glycogen synthase kinase-3beta. J. Virol. 77, 8019-8030.
Fujimuro,M., Liu,J., Zhu,J., Yokosawa,H., and Hayward,S.D. (2005). Regulation of the interaction between glycogen synthase kinase 3 and the Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen. J. Virol. 79, 10429-10441.
Garbett,E.A., Reed,M.W., Stephenson,T.J., and Brown,N.J. (2000). Proteolysis in human breast cancer. Mol. Pathol. 53, 99-106.
Gill,P.S., Tsai,Y.C., Rao,A.P., Spruck,C.H., III, Zheng,T., Harrington,W.A., Jr., Cheung,T., Nathwani,B., and Jones,P.A. (1998). Evidence for multiclonality in multicentric Kaposi's sarcoma. Proc. Natl. Acad. Sci. U. S. A 95, 8257-8261.
Griffiths,R. and Whitehouse,A. (2007). Herpesvirus saimiri episomal persistence is maintained via interaction between open reading frame 73 and the cellular chromosome-associated protein MeCP2. J. Virol. 81, 4021-4032.
Hagen,T. (2009). Characterization of the interaction between latency-associated nuclear antigen and glycogen synthase kinase 3beta. J. Virol. 83, 6312-6317.
Hu,J., Garber,A.C., and Renne,R. (2002). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J. Virol. 76, 11677-11687.
Hua,Z., Lv,Q., Ye,W., Wong,C.K., Cai,G., Gu,D., Ji,Y., Zhao,C., Wang,J., Yang,B.B., and Zhang,Y. (2006). MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS. One. 1, e116.
Huang,L.M., Huang,S.Y., Chen,M.Y., Chao,M.F., Lu,C.Y., Tien,H.F., Lee,C.Y., and Jeang,K.T. (2000). Geographical differences in human herpesvirus 8 seroepidemiology: a survey of 1,201 individuals in Asia. J. Med. Virol. 60, 290-293.
Jenner,R.G. and Boshoff,C. (2002). The molecular pathology of Kaposi's sarcoma-associated herpesvirus. Biochim. Biophys. Acta 1602, 1-22.
Kelley-Clarke,B., De Leon-Vazquez,E., Slain,K., Barbera,A.J., and Kaye,K.M. (2009). Role of Kaposi's sarcoma-associated herpesvirus C-terminal LANA chromosome binding in episome persistence. J. Virol. 83, 4326-4337.
Kovacevic,Z. and Richardson,D.R. (2006). The metastasis suppressor, Ndrg-1: a new ally in the fight against cancer. Carcinogenesis 27, 2355-2366.
Krithivas,A., Fujimuro,M., Weidner,M., Young,D.B., and Hayward,S.D. (2002). Protein interactions targeting the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus to cell chromosomes. J. Virol. 76, 11596-11604.
Kurdistani,S.K., Arizti,P., Reimer,C.L., Sugrue,M.M., Aaronson,S.A., and Lee,S.W. (1998). Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage. Cancer Res. 58, 4439-4444.
Lim,C., Sohn,H., Gwack,Y., and Choe,J. (2000). Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) binds ATF4/CREB2 and inhibits its transcriptional activation activity. J. Gen. Virol. 81, 2645-2652.
Linnekin,D. (1999). Early signaling pathways activated by c-Kit in hematopoietic cells. Int. J. Biochem. Cell Biol. 31, 1053-1074.
Liu,J., Martin,H.J., Liao,G., and Hayward,S.D. (2007). The Kaposi's sarcoma-associated herpesvirus LANA protein stabilizes and activates c-Myc. J. Virol. 81, 10451-10459.
Lodish,H.F., Zhou,B., Liu,G., and Chen,C.Z. (2008). Micromanagement of the immune system by microRNAs. Nat. Rev. Immunol. 8, 120-130.
Ma,L., Teruya-Feldstein,J., and Weinberg,R.A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682-688.
Maruyama,Y., Ono,M., Kawahara,A., Yokoyama,T., Basaki,Y., Kage,M., Aoyagi,S., Kinoshita,H., and Kuwano,M. (2006). Tumor growth suppression in pancreatic cancer by a putative metastasis suppressor gene Cap43/NDRG1/Drg-1 through modulation of angiogenesis. Cancer Res. 66, 6233-6242.
Meng,Y.X., Spira,T.J., Bhat,G.J., Birch,C.J., Druce,J.D., Edlin,B.R., Edwards,R., Gunthel,C., Newton,R., Stamey,F.R., Wood,C., and Pellett,P.E. (1999). Individuals from North America, Australasia, and Africa are infected with four different genotypes of human herpesvirus 8. Virology 261, 106-119.
Miettinen,M., Sarlomo-Rikala,M., and Lasota,J. (2000). KIT expression in angiosarcomas and fetal endothelial cells: lack of mutations of exon 11 and exon 17 of C-kit. Mod. Pathol. 13, 536-541.
Min-Fen Wu (2007). Characterization of Kaposi’s sarcoma-associated herpesvirus (KSHV) K15M protein. National Yang-Ming University Master Thesis.

Monini,P., Colombini,S., Sturzl,M., Goletti,D., Cafaro,A., Sgadari,C., Butto,S., Franco,M., Leone,P., Fais,S., Leone,P., Melucci-Vigo,G., Chiozzini,C., Carlini,F., Ascherl,G., Cornali,E., Zietz,C., Ramazzotti,E., Ensoli,F., Andreoni,M., Pezzotti,P., Rezza,G., Yarchoan,R., Gallo,R.C., and Ensoli,B. (1999). Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi's sarcoma. Blood 93, 4044-4058.
Moses,A.V., Jarvis,M.A., Raggo,C., Bell,Y.C., Ruhl,R., Luukkonen,B.G., Griffith,D.J., Wait,C.L., Druker,B.J., Heinrich,M.C., Nelson,J.A., and Fruh,K. (2002). Kaposi's sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J. Virol. 76, 8383-8399.
Murakami,Y., Yamagoe,S., Noguchi,K., Takebe,Y., Takahashi,N., Uehara,Y., and Fukazawa,H. (2006). Ets-1-dependent expression of vascular endothelial growth factor receptors is activated by latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus through interaction with Daxx. J. Biol. Chem. 281, 28113-28121.
Nishio,S., Ushijima,K., Tsuda,N., Takemoto,S., Kawano,K., Yamaguchi,T., Nishida,N., Kakuma,T., Tsuda,H., Kasamatsu,T., Sasajima,Y., Kage,M., Kuwano,M., and Kamura,T. (2008). Cap43/NDRG1/Drg-1 is a molecular target for angiogenesis and a prognostic indicator in cervical adenocarcinoma. Cancer Lett. 264, 36-43.
O'Donnell,K.A., Wentzel,E.A., Zeller,K.I., Dang,C.V., and Mendell,J.T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839-843.
O'Hara,A.J., Wang,L., Dezube,B.J., Harrington,W.J., Jr., Damania,B., and Dittmer,D.P. (2009). Tumor suppressor microRNAs are underrepresented in primary effusion lymphoma and Kaposi sarcoma. Blood 113, 5938-5941.
Ohsaki,E., Ueda,K., Sakakibara,S., Do,E., Yada,K., and Yamanishi,K. (2004). Poly(ADP-ribose) polymerase 1 binds to Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeat sequence and modulates KSHV replication in latency. J. Virol. 78, 9936-9946.
Pillai,R.S., Bhattacharyya,S.N., and Filipowicz,W. (2007). Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 17, 118-126.
Plancoulaine,S., Abel,L., van,B.M., Tregouet,D.A., Joubert,M., Tortevoye,P., de,T.G., and Gessain,A. (2000). Human herpesvirus 8 transmission from mother to child and between siblings in an endemic population. Lancet 356, 1062-1065.
Poliseno,L., Tuccoli,A., Mariani,L., Evangelista,M., Citti,L., Woods,K., Mercatanti,A., Hammond,S., and Rainaldi,G. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108, 3068-3071.
Qian,L.W., Xie,J., Ye,F., and Gao,S.J. (2007). Kaposi's sarcoma-associated herpesvirus infection promotes invasion of primary human umbilical vein endothelial cells by inducing matrix metalloproteinases. J. Virol. 81, 7001-7010.
Rabkin,C.S., Biggar,R.J., and Horm,J.W. (1991). Increasing incidence of cancers associated with the human immunodeficiency virus epidemic. Int. J. Cancer 47, 692-696.
Rainbow,L., Platt,G.M., Simpson,G.R., Sarid,R., Gao,S.J., Stoiber,H., Herrington,C.S., Moore,P.S., and Schulz,T.F. (1997). The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J. Virol. 71, 5915-5921.
Renne,R., Lagunoff,M., Zhong,W., and Ganem,D. (1996). The size and conformation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J. Virol. 70, 8151-8154.
Russo,J.J., Bohenzky,R.A., Chien,M.C., Chen,J., Yan,M., Maddalena,D., Parry,J.P., Peruzzi,D., Edelman,I.S., Chang,Y., and Moore,P.S. (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl. Acad. Sci. U. S. A 93, 14862-14867.
Sakakibara,S., Ueda,K., Nishimura,K., Do,E., Ohsaki,E., Okuno,T., and Yamanishi,K. (2004). Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi's sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen. J. Virol. 78, 7299-7310.
Schalling,M., Ekman,M., Kaaya,E.E., Linde,A., and Biberfeld,P. (1995). A role for a new herpes virus (KSHV) in different forms of Kaposi's sarcoma. Nat. Med. 1, 707-708.
Shamay,M., Krithivas,A., Zhang,J., and Hayward,S.D. (2006). Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi's sarcoma-associated herpesvirus LANA. Proc. Natl. Acad. Sci. U. S. A 103, 14554-14559.
Soulier,J., Grollet,L., Oksenhendler,E., Cacoub,P., Cazals-Hatem,D., Babinet,P., d'Agay,M.F., Clauvel,J.P., Raphael,M., Degos,L., and . (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86, 1276-1280.
Stebbing,J., Bourboulia,D., Johnson,M., Henderson,S., Williams,I., Wilder,N., Tyrer,M., Youle,M., Imami,N., Kobu,T., Kuon,W., Sieper,J., Gotch,F., and Boshoff,C. (2003). Kaposi's sarcoma-associated herpesvirus cytotoxic T lymphocytes recognize and target Darwinian positively selected autologous K1 epitopes. J. Virol. 77, 4306-4314.
Tang,J., Gordon,G.M., Muller,M.G., Dahiya,M., and Foreman,K.E. (2003). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen induces expression of the helix-loop-helix protein Id-1 in human endothelial cells. J. Virol. 77, 5975-5984.
Verma,S.C., Bajaj,B.G., Cai,Q., Si,H., Seelhammer,T., and Robertson,E.S. (2006a). Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus recruits uracil DNA glycosylase 2 at the terminal repeats and is important for latent persistence of the virus. J. Virol. 80, 11178-11190.
Verma,S.C., Borah,S., and Robertson,E.S. (2004). Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus up-regulates transcription of human telomerase reverse transcriptase promoter through interaction with transcription factor Sp1. J. Virol. 78, 10348-10359.
Verma,S.C., Choudhuri,T., Kaul,R., and Robertson,E.S. (2006b). Latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus interacts with origin recognition complexes at the LANA binding sequence within the terminal repeats. J. Virol. 80, 2243-2256.
Verma,S.C., Lan,K., and Robertson,E. (2007). Structure and function of latency-associated nuclear antigen. Curr. Top. Microbiol. Immunol. 312, 101-136.
Viejo-Borbolla,A., Ottinger,M., Bruning,E., Burger,A., Konig,R., Kati,E., Sheldon,J.A., and Schulz,T.F. (2005). Brd2/RING3 interacts with a chromatin-binding domain in the Kaposi's Sarcoma-associated herpesvirus latency-associated nuclear antigen 1 (LANA-1) that is required for multiple functions of LANA-1. J. Virol. 79, 13618-13629.
Watabe,T., Yoshida,K., Shindoh,M., Kaya,M., Fujikawa,K., Sato,H., Seiki,M., Ishii,S., and Fujinaga,K. (1998). The Ets-1 and Ets-2 transcription factors activate the promoters for invasion-associated urokinase and collagenase genes in response to epidermal growth factor. Int. J. Cancer 77, 128-137.
Westermarck,J. and Kahari,V.M. (1999). Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 13, 781-792.
Wong,L.Y. and Wilson,A.C. (2005). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen induces a strong bend on binding to terminal repeat DNA. J. Virol. 79, 13829-13836.
Xu,D., Dwyer,J., Li,H., Duan,W., and Liu,J.P. (2008). Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J. Biol. Chem. 283, 23567-23580.
You,J., Srinivasan,V., Denis,G.V., Harrington,W.J., Jr., Ballestas,M.E., Kaye,K.M., and Howley,P.M. (2006). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with bromodomain protein Brd4 on host mitotic chromosomes. J. Virol. 80, 8909-8919.
Zong,J.C., Ciufo,D.M., Alcendor,D.J., Wan,X., Nicholas,J., Browning,P.J., Rady,P.L., Tyring,S.K., Orenstein,J.M., Rabkin,C.S., Su,I.J., Powell,K.F., Croxson,M., Foreman,K.E., Nickoloff,B.J., Alkan,S., and Hayward,G.S. (1999). High-level variability in the ORF-K1 membrane protein gene at the left end of the Kaposi's sarcoma-associated herpesvirus genome defines four major virus subtypes and multiple variants or clades in different human populations. J. Virol. 73, 4156-4170.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊