跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宜軒
研究生(外文):Yi-Hsuan Tsai
論文名稱:EB病毒溶裂期複製起始點上組蛋白之修飾
論文名稱(外文):Histone modification on EBV lytic replication origin (OriLyt) upon viral reactivation
指導教授:陳紀如
指導教授(外文):Chi-Ju Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:73
中文關鍵詞:EB病毒溶裂期複製起始點組蛋白修飾
外文關鍵詞:EBVlytic replication origin (OriLyt)histone modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
EB病毒(Epstein-Barr virus)屬於一種人類疱疹病毒,主要感染B淋巴球及上皮細胞,和許多惡性疾病相關。潛伏期時,病毒基因體會以離合染色小體的形式存在,進入溶裂期時,病毒會以θ形式開始進行DNA複製,之後才逐漸變為滾環複製( rolling circle replication)。然而,在由組蛋白包裹成核小體的病毒基因體轉換為θ形式DNA複製的過程中,所參與的細胞及病毒活性,尚未被清楚探討。當病毒DNA有組蛋白包裹,病毒複製組是難以結合上溶裂期複製起始點(OriLyt)的。因此我們假設,在病毒活化過程中具有細胞活性的參與,以改變溶裂期複製起始點上DNA和組蛋白的結構,來啟動病毒DNA的複製。
H3K9 乙醯化和H3K4甲基化被認為和基因活化相關,而H3K9三甲基化則被認為和基因表現的抑制作用相關。在Raji 以及Akata EBV (+) 細胞中,我們發現病毒活化後,溶裂期複製起始點上H3K9乙醯化以及H3K4甲基化的程度明顯增加。相反的,H3K9三甲基化程度則有下降現象。H3K9乙醯化上升的現象伴隨著H3K9三甲基化的下降,發生在同一個殘基--賴胺酸上。出人意料地,H3S10磷酸化在溶裂期複製起始點上表現出獨特的變化情形。H3S10磷酸化在病毒活化初期出現明顯下降的現象,之後才逐漸上升。H3K14乙醯化的變化程度和H3S10磷酸化相當類似。在之前的報導中,H3S10磷酸化一般被認為只在細胞分裂期間與部分基因之活化相關。既然H3S10磷酸化的變化情形似乎只發生在溶裂期複製起始點上,並且早於Zta結合上該區域,我們利用磷酸酶抑制劑H89來抑制H3S10磷酸化,觀察其對於病毒基因體複製的重要性。H89抑制H3S10磷酸化的現象不影響BHLF1的轉錄。然而,H3S10磷酸化的被抑制,改變了溶裂期複製起始點上組蛋白之修飾,干擾Zta結合上該區域,因而延遲且抑制了病毒基因體的複製。以上結果顯示,EB病毒可能藉由細胞之組蛋白修飾機制,來啟動其溶裂期複製起始點之DNA複製。
Epstein-Barr virus (EBV), a human γ-herpesvirus, mainly infects B-lymphocytes and epithelial cells and is associated with various malignancies. EBV genome is maintained as a chromosome-like episome at latency. It is thought that lytic replication initiates with the theta (θ)-form replication and switches to roll-circle mode later in viral DNA replication. However, the cellular and viral activities involved in the transition from histone-associated genome to θ-replication remain unclear. Since it is spaciously constrained for viral replication machinery binding on a compact OriLyt, we hypothesized that the histone modification on EBV OriLyt are involved in initiating the viral DNA replication.
Histone H3 acetylation of lysine 9 (acH3K9) and methylation of lysine 4 (meH3K4) is implicated in transcription activation, while tri-methylation of histone H3 lysine 9 (tri-meH3K9) is associated with transcription repression. Here we showed that the level of acH3K9 and meH3K4 on OriLyt elevated significantly upon viral reactivation in Raji cells and Akata EBV (+) cells. On the contrary, tri-methylation of histone H3 lysine 9 was reduced upon viral reactivation in both cell lines. The reversal of the repressive histone H3-lysine 9- methylation was accompanied with the increase of the acetylation on the same residue. Surprisingly, the change of phosphorylation of H3 serine 10 (pH3S10) on OriLyt was unique. Signals of pH3S10 temporally went down to a significant low state, creating a dip in the expression profile. And the changes of acH3K14 were similar to those of pH3S10. In previous report, pH3S10 is considered to affect transcription activation only of a subset of genes during interphase. Since the change of pH3S10 seemed to be specific on OriLyt and prior to the binding of Zta, we used the kinase inhibitor H89 to inhibit pH3S10, trying to find out the importance of pH3S10 to viral genome replication. Inhibition of pH3S10 by H89 has no effect on BHLF1 expression but delays and reduces viral genome replication through disrupting the binding of Zta to OirLyt and the histone modification on that genome region. The results suggest that EBV adapted cellular histone modification machinery to initiate its DNA replication on OriLyt.
Contents Page

1. 中文摘要 1
2. Abstract 2
3. Introduction 3
3-1. Epstein-Barr virus (EBV) 3
3-1.1 Characteristic 3
3-1.2 Life cycle 3
3-1.3 Viral DNA replication in the lytic phase—role of Zta 4
3-1.4 The origin of lytic DNA replication—OriLyt 5
3-2. Chromatin organization and the histone modification 6
3-2.1 Chromatin structure 6
3-2.2 Chromatin organization of the EBV genome 6
3-2.3 Histone modification and transcriptional regulation 8
3-2.4 Functional interplay between different histone modifications 11
3-2.5 Histone modifying enzymes 11
4. Aim 14
4-1. Histone modifications on OriLyt 14
4-2. Histone modifying enzymes 14
5. Material and Method 15
5-1. Bacteria culture 15
5-2. Cell lines and culture 15
5-3. PCR 16
5-4. Transient transfection (Microporation / Electroporation) 16
5-5. Chromatin immunoprecipitation (ChIP) 17
5-6. Total RNA purification 20
5-7. Reverse transcriptional 20
5-8. Cells total protein extraction 20
5-9. SDS-polyacrylamide gel (SDS-PAGE) 21
5-10. Western blot 21
5-11. Purification of plasmid DNA 23
5-12. Chemicals and reagents 24
5-13. Plasmids and primers 25
6. Results 26
6-1. Acetyl-H3 on OriLyt increases upon viral reactivation 26
6-2. The change of histone modification on OriLyt upon viral reactivation 26
6-2.1 In TPA/SB-induced Raji cells 26
6-2.2 Overexpression Zta in Raji cells 28
6-2.3 In anti-human IgG-induced Akata (+) cells 29
6-3. The histone modification on OriLyt correlates with the viral genome replication and BHLF1 transcription in Akata (+) cells 31
6-3.1 In anti-human IgG-induced Akata (+) cells 32
6-3.2 Overexpression Zta in Akata (+) cells 32
6-4. H89 inhibits pH3S10 and the lytic viral protein expression in chemical-induced cells but not in Zta-overexpressing cell 33
6-4.1 In Raji cells 33
6-4.2 In Akata (+) cells 34
6-5. Inhibition of pH3S10 reduces viral genome replication by affecting the binding of Zta to OriLyt and histone modifications 34
6-5.1 Viral genome replication 35
6-5.2 BHLF1 transcription 35
6-5.3 The binding of Zta to OriLyt 35
6-5.4 Histone modifications on OriLyt 36
7. Conclusion 37
8. Discussion 38
8-1. The increase of histone acetylation on OriLyt is not due to the effect of sodium butyrate 38
8-2. Sequential patterns of histone modification and the binding of Zta to OriLyt 38
8-1.1 The increase of acH3K9 and the decrease of meH3K9 may be Zta dependent 38
8-1.2 The binding of Zta to OriLyt may be dependent on the decrease of pH3S10 39
8-3. The change of histone modification on Zp and Cp 40
8-4. H89 treatment may affect the expression of Zta directly 41
8-5. Possible histone modifying enzymes involved in the OriLyt modification 41
8-6. The chromatin organization and genome replication 43
9. Reference 44
10. Figures 52
Fig 1. Histone H3 acetylation on EBV OriLyt increases upon viral reactivation 52
Fig 2. The change of histone modification and the chromatin binding factor Zta on OriLyt upon viral reactivation 53


Fig 3. The change of histone modification and the chromatin binding factor Zta on OriLyt, Zp, and Cp upon viral reactivation in Raji cells treated with TPA/SB 54
Fig 4. Quantitative analysis of the change of histone modification and the chromatin binding factor Zta on OriLyt upon viral reactivation in Raji cells treated with TPA/SB 55
Fig 5. The change of histone modification and the chromatin binding factor Zta on OriLyt, Zp, and Cp upon viral reactivation in Raji cells overexpressing Zta 56
Fig 6. Quantitative analysis of the change of histone modification and the chromatin binding factor Zta on OriLyt upon viral reactivation in Raji cells overexpressing Zta 57
Fig 7. The change of histone modification and the chromatin binding factor Zta on OriLyt, Zp, and Cp upon viral reactivation in Akata(+) cells 58
Fig 8. Quantitative analysis of the histone modification and the chromatin binding factor Zta on OriLyt upon reactivation in Akata(+) cells 59
Fig 9. Upon viral reactivation, the EBV BHLF1 expression correlates with genome replication in Akata (+) cells treated with anti-human IgG or overexpressing Zta 60
Fig 10. H89 treatment affects the expression of Zta and EAD in Raji cells treated with TPA/SB but not in cells overexpressing Zta 61
Fig 11. H89 treatment affects the expression of Zta and EAD in Akata(+) cells treated with anti-hIgG but not in cells overexpressing Zta 62
Fig 12. H89 treatment affects viral genome replication but not the expression of EBV BHLF1 in Akata(+) cells overexpressing Zta 63
Fig 13. Inhibition of pH3S10 affects the histone modification and the chromatin binding factor Zta on OriLyt in Akata(+) cells overexpressing Zta 64
Fig 14. H89 treatment affects the histone modification and the chromatin binding factor Zta on OriLyt upon viral reactivation in Raji cells treated with TPA/SB 65
11. Appendix 66
Appendix 1. The Epstein-Barr virus genome 66
Appendix 2. Induction of EBV reactivation by Ig crosslinkage 67
Appendix 3. Structure of OriLyt of EBV 68
Appendix 4. Models of replication complex formation on OriLyt 69
Appendix 5. Chromatin modifications 70
Appendix 6. The enzymes responsible for covalent histone modifications 71
Appendix 7. Members of the two major families of histone demethylases and their mechanisms of histone demethylation 72
Appendix 8. Vector pcDNA 3.1 73
1. Adamson AL, Kenney S. 1999. The Epstein-Barr Virus BZLF1 Protein Interacts Physically and Functionally with the Histone Acetylase CREB-Binding Protein. J. Virol 73: 6551-6558.
2. Amon, W., and P. J. Farrell. 2005. Reactivation of Epstein-Barr virus from latency. Rev. Med. Virol. 15: 149-156.
3. Ausio, J., Dong, F., and van Holde, K.E. 1989. Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J. Mol. Biol. 206: 451–463.
4. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. 2007. High-resolution profiling of histone methylations in the human genome. Cell. 129: 823-837.
5. Bannister, A.J., and Kouzarides, T. 2005. Reversing histone methylation. Nature 436: 1103–1106.
6. Bannister, A.J., and Kouzarides, T. 2004. Histone methylation: recognizing the methyl mark. Methods Enzymol. 376: 269–28
7. Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and Kouzarides, T. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124.
8. Baumann, M., Feederle, R., Kremmer R., and HammerschmidT W. 1999. Cellular transcription factors recruit viral replication proteins to activate the Epstein–Barr virus origin of lytic DNA replication, oriLyt. The EMBO Journal. 18: 6095–6105.
9. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, et al. 2005. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell. 120: 169–181.
10. Berger, S.L. 2007 The complex language of chromatin regulation during transcription. Nature. 447: 407-412.
11. Bhaumik, SR., Smith E., & Shilatifard, A. 2007. Covalent modifications of histones during development and disease pathogenesis. Nat. Struc. & Mol. Bio. 14: 1008 –1016.
12. Borza, C. M. & Hutt-Fletcher, L. M. 2002. Alternate replication in B-cells and epithelial cells switches tropism of Epstein–Barr virus. Nature Med. 8: 594–599.
13. Brownell, J.E. Zhou, J. Ranalli, T. Kobayashi, R. Edmondson, D.G. Roth, S.Y. Allis, C.D. 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 84: 843–851.
14. Candido, E. P., R. Reeves, and J. R. Davie. 1978. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell. 14: 105-113.
15. Cayrol, C., and E. K. Flemington. 1995. Identification of cellular target genes of the Epstein-Barr virus transactivator Zta: activation of transforming growth factor ßigh3 (TGF-ßigh3) and TGF-ß1. J. Virol. 69: 4206-4212.
16. Chang, Y. N., Dong, D. L., Hayward, G. S., and Hayward, S. D. 1990. The Epstein–Barr virus Zta transactivator: A member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J. Virol. 64: 3358–3369.
17. Chau, CM. and Lieberman, PM. 2004. Dynamic chromatin boundaries delineate a latency control region of Epstein-Barr virus. J Virol. 78(22): 12308–12319.
18. Chavrier, P., Gruffat, H., Chevallier-Greco, A., Buisson, M., and Sergeant, A. 1989. The Epstein–Barr virus (EBV) early promoter DR contains a cis-acting element responsive to the EBV transactivator EB1 and an enhancer with constitutive and inducible activities. J. Virol. 63: 607–614.
19. Chen, CJ., Deng, Z., Kim, AY., Blobel, GA., and Lieberman, PM. 2001. Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol. 21(2): 476–487.
20. Cheung, P., Allis, C.D. and Sassone-Corsi, P., 2000. Signaling to chromatin through histone modifications. Cell. 103: 263–271.
21. Cheung, P., K. G. Tanner, W. L. Cheung, P. Sassone-Corsi, J. M. Denu, and C. D. Allis. 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell. 5: 905-915.
22. Chevallier, G.A., E. Manet, P. Chavrier, C. Mosnier, J. Daillie, and A. Sergeant. 1986. Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. The EMBO J. 5: 3243-3249.
23. Chevallier-Greco, A., Gruffat, H., Manet, E., Calender, A., and Sergeant,A. 1989. The Epstein–Barr virus (EBV) DR enhancer contains two functionally different domains: Domain A is constitutive and cell specific, domain B is transactivated by the EBV early protein R. J. Virol. 63: 615–623.
24. Christian, A.H., Stuart, L. S. 1997. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATS off to HDACs. Cur. Opi. Chem. Bio. 1: 300-308.
25. Christopher, EB. and John, MD. 2008. Catalysis and substrate selection by histone / protein lysine acetyltransferases. Current Opinion in Structural Biology. 18: 682–689.
26. Cloos, P.A., J., Antal, Hansen, K.H., Christensen, J., Agger, K., Maiolica, A., Rappsilber, T., and Helin, K. 2006. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3, Nature. 442: 307–311.
27. Countryman, J., and G. Miller. 1985. Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc. Natl. Acad. Sci. USA. 82: 4085-4089.
28. Countryman, JK., Gradoville, L., and Miller G. 2008. Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein-Barr Virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors. J Virol. 82: 4706–4719.
29. Cox, M. A., Leahy, J., and Hardwick, J. M. 1990. An enhancer within the divergent promoter of Epstein–Barr virus responds synergistically to the R and Z transactivators. J. Virol. 64: 313–321.
30. Day L, Chau CM, NebozhynM, Rennenkamp AJ, Showe M, Lieberman PM. 2007. Chromatin profiling of Epstein-Barr virus latency control region. J Virol. 81: 6389–6401.
31. Deckert J, Struhl K. Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol. 2001. 21:2726–2735.
32. Deng, Z., C.J. Chen, D. Zerby, H.-J. Delecluse, and P. M. Lieberman. 2001. Identification of acidic and aromatic residues in the Zta activation domain essential for Epstein-Barr virus reactivation. J. Virol. 75: 10334-10347.
33. Deng, Z., Chen, CJ., Chamberlin, M., Lu, F., Blobel, GA., Speicher, D., Cirillo, LA., Zaret, KS., and Lieberman1, PM. 2003. The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation. Mol Cell Biol. 23: 2633-2644.
34. Thallium C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K., and Zhou, M.M. 1999. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491-496.
35. Di Gennaro E, Bruzzese F, Caraglia M, Abruzzese A, Budillon A. 2004. Acetylation of proteins as novel target for antitumor therapy: Review article. Amino Acids. 26: 435–441.
36. Dyson, P.J. and Farrell, P.J. 1985. Chromatin structure of Epstein-Barr virus. J. gen. Virol. 66: 1931-1940.
37. Feederle, R., M. Kost, M. Baumann, A. Janz, E. Drouet, W. Hammerschmidt, and H. J. Delecluse. 2000. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. The EMBO J. 19: 3080-3089.
38. Fejer, G., Koroknai, A., Banati, F., Gyo¨ry, I., Salamon, D., Wolf, H., Niller, H.H., and Minarovits, J. 2008. Latency type-specific distribution of epigenetic marks at the alternative promoters Cp and Qp of Epstein–Barr virus. Journal of General Virology. 89: 1364–1370.
39. Fixman, E., and G. S. Hayward, and S. D. Hayward. 1992. trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J. Virol. 66: 5030-5039.
40. Fixman ED, Hayward GS and Hayward SD. 1995. Replication of Epstein–Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol, 69: 2998–3006.
41. Fodor, B.D., Kubicek, S., Yonezawa, M., O'Sullivan, R.J., Sengupta, L., Opravil, R., Perez-Burgos, S., Mechtler, K., Schotta, G., and Jenuwein, T. 2006. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells, Genes Dev. 20: 1557–1562.
42. Gibbons RJ. 2005. Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Hum Mol Genet. 1: R85–92.
43. Gradoville, L., D. Kwa, A. El-Guindy, and G. Miller. 2002. Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle. J. Virol. 76: 5612-5626.
44. Gruffat, H., E. Manet, and A. Sergeant. 2002. MEF2-mediated recruitment of class II HDAC at the EBV immediate early gene BZLF1 links latency and chromatin remodeling. EMBO Rep. 3: 141.
45. Gruffat, H., Renner, O., Pich, D., and Hammerschmidt, W. 1995. Cellular proteins bind to the downstream component of the lytic origin of DNA replication of Epstein–Barr virus. J. Virol. 69: 1878–1886.
46. Hammerschmidt W, Sugden B. 1988. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell. 55(3): 427-33.
47. Hsu, J.Y., Sun, Z.W., Li, X., Reuben, M., Tatchell, K., Bishop, D.K., Grushcow, J.M., Brame, C.J., Caldwell, J.A., Hunt, D.F. et al. 2000. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell. 102: 279–291.
48. Janssens, V., and Goris, J. 2001. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signaling. Biochem. J. 353: 417–439
49. Jenkins, P. J., U. K. Binne, and P. J. Farrell. 2000. Histone acetylation and reactivation of Epstein-Barr virus from latency. J. Virol. 74:710-720.
50. Jenuwein, T., and C. D. Allis. 2001. Translating the histone code. Science 293: 1074-1080.
51. Kenney, S., J. Kamine, E. Holley-Guthrie, J. C. Lin, E. C. Mar, and J. Pagano. 1988. The Epstein-Barr virus (EBV) BZLF1 immediate-early gene product differentially affects latent versus productive EBV promoters. J. Virol. 63: 1729-1736.
52. Kieff, E. 1996. Epstein-Barr virus and its replication, p. 2343-2396. In B. N. Fields, D. M. Knipe, and P. M. Howley (ed.), Field's virology, 3rd ed., vol. 2:. Lippincott-Raven Publishers, Philadelphia, Pa.
53. Klose, R.J., Yan, Q., Tothova, Z., Yamane, K., Erdjument-Bromage, H., Tempst, P., Gilliland, DG., Zhang Y., and Kaelin WG. 2007. The Retinoblastoma Binding Protein RBP2 Is an H3K4 Demethylase. Cell. 128: 889–900.
54. Klose, R.J. & Zhang, Y. 2007. Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol. 8: 307–318.
55. Kornberg RD. 1974. Chromatin structure: a repeating unit of histones and DNA. Science. 184: 868–71.
56. Kornberg RD, and Lorch Y. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell. 98: 285–94.
57. Kouzarides, T. 2002. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12: 198–209.
58. Kouzarides, T., G. Packham, A. Cook, and P. J. Farrell. 1991. The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene 6: 195-204.
59. Kurdistani, S.K., Tavazoie, S., and Grunstein, M. 2004. Mapping global histone acetylation patterns to gene expression. Cell. 117: 721–733.
60. Hammerschmidt, W., and B. Sugden. 1988. Indentification and characterization of oriLyt, a lytic origin of DNA replication of Wpstein-Barr virus. Cell 55: 427-433.
61. Hassan A.H., Neely, K.E., and Workman, J.L. 2001. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104: 817-827.
62. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, et al. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39: 311–318.
63. Isenberg I. 1979. Histones. Annu Rev Biochem. 48: 159–91.
64. Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293: 1074–1080.
65. Kim KC, Huang S. 2003. Histone methyltransferases in tumor suppression. Cancer Biol. Ther. 2: 491–499.
66. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120
67. Li T, Vu TH, Ulaner GA et al. 2004. Activating and silencing histone modifications form independent allelic switch regions in the imprinted Gnas gene. Hum Mol Genet 13: 741–750.
68. Liang G, Lin JCY, Wei V et al. 2004. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA 101: 7357–7362.
69. Liao, G., J. Huang, E. D. Fixman, and S. D. Hayward. 2005. The Epstein-Barr virus replication protein BBLF2/3 provides an origin-tethering function through interaction with the zinc finger DNA binding protein ZBRK1 and the KAP-1 corepressor. J. Virol. 79: 245-256.
70. Liao, G., F. Y. Wu, and S. D. Hayward. 2001. Interaction with the Epstein-Barr virus helicase targets Zta to DNA replication compartments. J. Virol. 75: 8792-8802.
71. Lieberman, P. M., Berk, A. J., Baumann, R., Grogan, E., Ptashne, M., and Miller, G. 1994. A mechanism for TAFs in transcriptional activation: Activation domain enhancement of TFIID–TFIIA–promoter DNA complex formation changing Epstein–Barr viral ZEBRA protein into a more powerful activator enhances its capacity to disrupt latency. Genes Dev. 8: 995–1006.
72. Lieberman, P. M., and A. J. Berk. 1990. In vitro transcriptional activation, dimerization, and DNA-binding specificity of the Epstein-Barr virus Zta protein. J. Virol. 64: 2560-2568.
73. Lieberman, P. M., J. M. Hardwick, J. Sample, G. S. Hayward, and S. D. Hayward. 1990. The Zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J. Virol. 64: 1143-1155.
74. Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL. 2000. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell. 5: 917-26.
75. Luger K, Mader AW, Richmond RK. 1997. Crystal structure of the nucleosome core particle at 2.8A resolution. Nature. 389: 251–60.
76. Mahadevan LC, Willis AC, Barratt MJ. 1991. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell. 65: 775-783.
77. Margueron, R., Trojer, P., and Reinberg, D. 2005. The key to development: interpreting the histone code? Curr. Opin. Genet. Dev. 15: 163–176.
78. Martin, D. G. et al. 2006. The Yng1p plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3. Mol. Cell. Biol. 26: 7871–7879.
79. McBride AE, Silver PA. 2001. State of the arg: Protein methylation at arginine comes of age. Cell. 106: 5–8.
80. Metzger, E., Wissmann, M., Yin, N., Müller, JM., Schneider, R., Buettner, R., and Schüle, R. 2005. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 437: 436–439.
81. Metzger, E. and Schüle, R. 2007. The expanding world of histone lysine demethylases. Nature Structural & Molecular Biology. 14: 252 – 254.
82. Nemerow, G. R., Mold, C., Schwend, V. K., Tollefson, V. & Cooper, N. R. 1987. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein–Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complment fragment C3d. J. Virol. 61: 1416–1420.
83. Nowak, S.J. and Corces, V.G. 2004. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20: 214–220.
84. P. Sassone-Corsi, C.A. Mizzen, P. Cheung, C. Crosio, L. Monaco, S. Jacquot, A. Hanauer and C.D. Allis. 1999. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science. 285: 886–891.
85. Paik, W.K., Paik, D.C. & Kim, S. 2007. Historical review: the field of protein methylation. Trends Biochem. Sci. 32:146–152.
86. Papp B, Muller J. 2006. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG protein. Genes Dev. 20: 2041–2054.
87. Prigent C. and Dimitrov S. 2003. Phosphorylation of serine 10 in histone H3, what for? Journal of Cell Science 116: 3677-3685.
88. Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, BD., Sun, ZW., Schmid, M., Opravil, S., Mechtler, K., Ponting, CP., Allis, CD. & Jenuwein, T. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 406: 593–599.
89. Rice JC, Allis CD. 2001. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13: 263–273.
90. Rickinson, A. B., and E. Kieff. 1996. Epstein-Barr virus, p. 2397-2446. In B. N. Fields, D. M. Knipe, and P. M. Howley (ed.), Field's virology, 3rd ed., vol. 2:. Lippincott-Raven Publishers, Philadelphia, Pa.
91. Roh T-Y, Cuddapah S, Zhao K. 2005. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev 19: 542–552.
92. Santos-Rosa H and Caldas C. 2005. Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer. 41: 2381-402.
93. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarrides T. 2002. Active genes are tri-methylated at K4 of histone H3. Nature. 41: 9407–411.
94. Sarisky, R. T., Z. Gao, P. M. Lieberman, E. D. Fixman, G. S. Hayward, and S. D. Hayward. 1996. A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. J. Virol. 70: 8340-8347.
95. Sassone-Corsi P, Mizzen CA, Cheung P, Crosio C, Monaco L, Jacquot S, Hanauer A, Allis CD. 1999. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285:886-891.
96. Schepers A, Pich D and Hammerschmidt W. 1993a. A transcription factor with homology to the AP-1 family links RNA transcription and DNA replication in the lytic cycle of Epstein–Barr virus. The EMBO J, 12: 3921–3929.
97. Schonthal, A. H. 2001. Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett. 170: 1–13
98. Shaw, J. E., L. F. Levinger, and C. W. Carter, Jr. 1979. Nucleosomal structure of Epstein-Barr virus DNA in transformed cell lines. J. Virol. 29: 657-665.
99. Shi, Y. 2007. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet. 8: 829–833.
100. Shi, X. et al. 2006. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96–99.
101. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, JR. and Yang Shi. 2004. Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1. Cell. 119: 941–953.
102. Shilatifard, A. 2006. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75: 243–269.
103. Sims, R.J., III & Reinberg, D. 2006. Histone H3 Lys 4 methylation: caught in a bind? Genes Dev. 20: 2779–2786.
104. Speck SH, Chatila T, and Flemington E. 1997. Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol. 5: 399-405.
105. Strahl BD, Allis CD. 2000. The language of covalent histone modifications. Nature. 403: 41–5.
106. Thomson S, Clayton AL, Hazzalin CA, Rose S, Barratt MJ, Mahadevan LC. 1999. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18:4779-4793.
107. Tony Kouzarides. 2007. SnapShot: Histone-Modifying Enzymes. Cell. 128(3): 802-803.
108. Van Hooser, A., Goodrich, D. W., Allis, C. D., Brinkley, B. R. and Mancini, M. A. 1998. Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J. Cell Sci. 111: 3497-3506.
109. Wang A, Kurdistani SK, Grunstein M. Requirement of Hos2 histone deacetylase for gene activity in yeast. Science. 2002. 298:1412–1414.
110. Weinmann, A.S. and Farnham, P.J. 2002. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods. 26: 37–47.
111. Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M., and Shi, Y. 2006. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases, Cell. 125: 467–481.
112. Whitlock, J.P., Jr., and Simpson, R.T. 1977. Localization of the sites along nucleosome DNA which interact with NH2-terminal histone regions. J. Biol. Chem. 252: 6516–6520.
113. Wolffe, A.P. 1998. Chromatin: Structure and Function (San Diego, CA: Academic Press).
114. Wolffe AP, Hayes JJ. 1999. Chromatin disruption and modification. Nucleic Acids Res. 27: 711–20.
115. Yates, J., N. Warren, D. Reisman, and B. Sugden. 1984. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc. Natl. Acad. Sci. USA 81: 3806–3810.
116. Yates, J. L., and N. Guan. 1991. Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J. Virol. 65: 483–488.
117. Yin, QY., Jupiter, K., Flemington, EK. 2004. The Epstein-Barr virus transactivator Zta binds to its own promoter and is required for full promoter activity during anti-Ig and TGF-beta1 mediated reactivation. Virology. 327(1):134-43.
118. Yuan GC, Ma P, Zhong W, and Liu JS, Statistical assessment of the global regulatory role of histone acetylation in Saccharomyces cerevisiae. Genome Biol. 2006. 7(8): R70.
119. Zerby D, Chen C-J, Poon E, Lee D, Shiekhattar R, Lieberman P M. 1999. The amino-terminal C/H1 domain of CREB binding protein mediates Zta transcription activation of latent Epstein-Barr virus. Mol Cell Biol. 19: 1617–1626.
120. Zhang, L., Eugeni, E.E., Parthun, M.R., and Freitas, M.A. 2003. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112: 77–86.
121. Zhang, K., Siino, J.S., Jones, P.R., Yau, P.M., and Bradbury, E.M. 2004. A mass spectrometric ‘‘Western blot’’ to evaluate the correlations between histone methylation and histone acetylation. Proteomics. 4: 3765–3775.
122. Zhong, S. P., Ma, W. Y. and Dong, Z. 2000. ERKs and p38 kinases mediate ultraviolet B-induced phosphorylation of histone H3 at serine 10. J. Biol. Chem. 275: 20980-20984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top