跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 07:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許珍鳳
研究生(外文):Chen-Feng Hsu
論文名稱:酸性pH對大腸桿菌素colicinV合成和分泌以及對敏感菌抵抗colicinV毒殺之影響
論文名稱(外文):The Effects of Acid pH on the Synthesis and Secretion of Colicin V, and on the Bacterial Resistance to Colicin
指導教授:胡小婷
指導教授(外文):Shiau-Ting Hu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:59
中文關鍵詞:大腸桿菌素V
外文關鍵詞:Colicin V
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細菌彼此在競爭有限的養分與生存空間時,會分泌細菌毒素 (bacteriocins) 毒殺其它細菌或抑制對方的生長,藉此增加本身的生存機會。大腸桿菌素 (Colicin) 便是由腸桿菌科細菌所分泌的細菌毒素。Colicin V (ColV) 是一種在細胞膜上打洞以破壞膜電位的方式造成細菌死亡的離子孔洞型大腸桿菌素,由四條基因:cvaAB及cvi-cvaC負責ColV的合成、修飾、分泌及免疫。
先前研究指出,含有可產生ColV質體的菌株培養在酸性的環境下其殺菌能力較差,敏感菌培養在酸性的環境下對ColV的抗性則較強。本論文探討細菌在酸性壓力下所誘發之抗酸系統Glutamate-dependent acid resistance systems (GDAR) 中的調控蛋白對ColV殺菌力以及對敏感菌抵抗ColV毒殺之影響。GDAR的GadX和GadW調控網絡包含gadX、gadY、rpoS、gadW和gadE。將gadW突變後會減弱ColV的殺菌力。gad系列基因突變後對敏感菌抵抗ColV毒殺則無顯著影響。酸性pH和gadW突變影響ColV的殺菌力並非透過調控cvi-cvaC或cvaAB啟動子的活性與ColV的合成,而是抑制ColV的分泌。西方墨點法顯示培養在酸性pH環境下的細菌,其內部未經修飾,無法被CvaA和CvaB分泌出去的pre-ColV的量大量上升,且可偵測到兩個分子量介於17-26 kDa的未知蛋白,推測可能是CvaA或CvaB的降解部分。酸性pH可能是透過影響CvaA或CvaB的穩定性,繼而抑制ColV的修飾及分泌,造成ColV的殺菌力減弱。至於酸性pH影響敏感菌對ColV抗性的調控機制仍未知。gadW突變後並非透過下游MdtEF膜蛋白影響ColV的分泌,MdtEF也不影響敏感菌對ColV的抗性。gadW突變後透過何種機制影響ColV的分泌仍需後續研究探討。酸性pH會影響的調控網絡範圍很廣,gadW突變後的調控機制在影響ColV的殺菌力部分可能只佔了一小區塊。
Bacteria produce and secrete proteinaceous toxins, bacteriocins, to inhibit growth of other related bacteria for surviving in limited space and nutrients. Colicin V (ColV), one kind of Escherichia coli-produced bacteriocin, is encoded by cvaC in one of two opposite operons, cvi-cvaC and cvaAB. Cvi is responsible for bacterial immunity against ColV. CvaA and CvaB are involved in the modification and export of ColV. ColV can insert itself and form pores into bacterial inner membranes. It influences bacterial membrane potential, and disrupts proton motive of sensitive bacteria, which results in cell death.
Previous reports revealed that acid pH affects bacteria to produce and be more resistant to ColV by unknown mechanism. It seemed that regulatory proteins induced by acid stress might have influence on ColV. Glutamate dependent acid resistance (GDAR) system is most frequently utilized by bacteria when encountering acid situations, and most thoroughly studied to date. The genes of GDAR system include rpoS, gadX, gadY, gadW, and gadE, most of which are transcription factors. To investigate whether Gad regulatory proteins in GDAR system have influence on ColV, we generated gad genes knockout mutants. In bacteriocin assay, we found that ColV in gadW knockout mutant caused much smaller inhibition zone compared with the wild type strain while other mutants did not. The dimension of inhibition zones was no difference between mutants and the wild type strain when they were recipients of ColV. In promoter activity assay, there were no difference between cvi-cvaC or cvaAB promoter activity in the wild type strain and mutants. Acid pH has no effect on cvi-cvaC or cvaAB promoter activity. Western analysis showed that the amount of ColV was notably different between supernatants of bacteria cultured at pH 7.0 and pH 5.5. pre-ColV, which was not yet modified therefore can not be secreted, was accumulated in the total cell lysate of bacteria cultured at pH 5.5 but not at pH 7.0.. Unknown proteins were observed in the total cell lysate of bacteria cultured at pH 5.5 but not at pH 7.0. It may be the degradation forms of CvaA or CvaB. The mechanism is presumed that acid pH may have influence on CvaA or CvaB stability and therefore restrain the modification and secretion of ColV. The mechanism that acid pH increased the bacterial resistance to ColV is unknown. Western analysis showed that the amount of ColV was the same with the pellet of the total cell lysate of the wild type strain and gadW knockout mutant, but notable difference in the supernatant. It is already known that GadW suppresses the expression of gadX. These evidence implicate that gadW knockout mutation representing gadX overexpression may have effect on the secretion of ColV through unknown mechanism. Acid pH has influence on wide regulation network. GadX regulation network may contribute to only a small part of the regulation of ColV.
摘要 1
Abstract 2
第一章 緒論 4
一、 大腸桿菌 (Escherichia coli; E. coli) 4
二、 細菌毒素 (Bacteriocin) 4
三、 大腸桿菌素 (Colicin) 5
(一) 大腸桿菌素 5
(二) 大腸桿菌素之分類 5
(三) 大腸桿菌素之殺菌機制 6
(四) 大腸桿菌素之應用 7
四、 大腸桿菌素V (Colicin V; ColV) 7
(一) ColV的合成 (Synthesis) 7
(二) ColV的分泌 (Secretion) 8
(三) ColV的輸入 (Import) 9
(四) ColV的免疫 (Immunity) 9
五、 酸性壓力 (Acid stress) 10
(一) 細菌對抗酸性壓力之方法 10
(二) 大腸桿菌抗酸系統 (Acid resistance system;AR system) 10
(三) 大腸桿菌GDAR系統 10
(四) GadX和GadW調控網絡 11
六、 酸性壓力對ColV殺菌力和敏感菌對ColV抗性之影響 12
七、 研究目的和方向 13
第二章 材料和方法 14
一、 藥品及試劑 14
二、 細菌菌株、培養條件及菌種保存 14
三、 聚合酶連鎖反應 (Polymerase chain reaction;PCR) 14
四、 瓊脂凝膠電泳 (Agarose gel electrophoresis) 15
五、 DNA的回收與純化 (DNA extraction and purification) 15
六、 限制酶之切割 (Restriction enzyme digestion) 15
七、 DNA接合反應 (DNA ligation) 16
八、 勝任細胞之製備 (Competent cell) 16
(一) 氯化鈣製備法 16
(二) 無菌二次水製備法 16
九、 大腸桿菌勝任細胞之轉型 (Transformation) 16
(一) 熱休克法 (Heat shock) 16
(二) 電穿孔法 (Electroporation) 17
十、 質體之純化 (Plasmid purification) 17
(一) 傳統法少量純化 17
(二) 套組少量純化 (Mini-M system) 17
十一、質體之構築 (Construction of plasmids) 17
(一) pBluescript-cvi-cvaC 18
(二) pACYC184-cvaA-cvaB 18
十二、大腸桿菌突變株製備 (Knockout mutants) 18
十三、大腸桿菌素ColV殺菌實驗 19
十四、乙型半乳糖分解酶 (β-galactosidase) 活性之測定 19
十五、西方墨點分析 (Western blotting assay) 20
(一) 蛋白質誘導表現及萃取 20
(二) 聚丙烯醯胺凝膠電泳 (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis;SDS-PAGE) 20
(三) 蛋白質轉漬 21
(四) 免疫抗體標定 21
(五) 化學冷光呈色 21
第三章 結果 22
一、 酸性pH對ColV殺菌力以及對敏感菌抵抗ColV毒殺之影響 22
(一) 酸性pH對ColV殺菌力之影響 22
(二) 酸性pH對敏感菌抵抗ColV毒殺之影響 22
二、 gad系列基因突變株 23
三、 gad系列基因突變對ColV殺菌力以及對敏感菌抵抗ColV毒殺之影響 ……………………………………………………………………………23
(一) gad系列基因突變對ColV殺菌力之影響 23
(二) gad系列基因突變對敏感菌抵抗ColV毒殺之影響 24
四、 gad系列基因突變和酸性pH對cvi-cvaC、cvaAB啟動子活性之影響 ……………………………………………………………………………24
(一) gad系列基因突變對cvi-cvaC、cvaAB啟動子活性之影響 24
(二) 酸性pH對cvi-cvaC、cvaAB啟動子活性之影響 25
五、 西方墨點法偵測CvaA、CvaB及CvaC的表現 25
(一) pBluescript-cvi-cvaC及pACYC184-cvaA-cvaB質體建構 26
(二) 西方墨點法偵測CvaA、CvaB及CvaC的表現 26
(三) 酸性pH和gadW突變對ColV合成和分泌的影響 27
六、 MdtEF膜蛋白突變對ColV殺菌力以及對敏感菌抵抗ColV毒殺之影響 ……………………………………………………………………………28
(一) mdtEF突變對ColV殺菌力之影響 28
(二) mdtEF突變對敏感菌抵抗ColV毒殺之影響 28
第四章 討論 29
一、 酸性pH對ColV殺菌力以及對敏感菌抵抗ColV毒殺之影響 29
二、 gad系列基因突變對ColV殺菌力以及對敏感菌抵抗ColV毒殺之影響 ……………………………………………………………………………29
(一) gad系列基因突變對ColV殺菌力之影響 30
(二) gad系列基因突變對敏感菌抵抗ColV毒殺之影響 30
三、 gad系列基因突變和酸性pH對cvi-cvaC、cvaAB啟動子活性之影響 ……………………………………………………………………………30
(一) gad系列基因突變對cvi-cvaC、cvaAB啟動子活性之影響 30
(二) 酸性pH對cvi-cvaC、cvaAB啟動子活性之影響 31
四、 酸性pH和gadW突變對ColV合成和分泌的影響 31
(一) 酸性pH對ColV合成和分泌的影響 31
(二) gadW突變對ColV合成和分泌的影響 32
五、 MdtEF膜蛋白突變對ColV殺菌力以及對敏感菌抵抗ColV毒殺之影響 ……………………………………………………………………………32
六、 gadW突變後抑制ColV殺菌力的調控機制 32
七、 酸性pH影響ColV殺菌力和敏感菌對ColV抗性的調控機制 33
第五章 参考資料 34
第六章 圖表 39
表一、本論文所使用之大腸桿菌菌株 39
表二、本論文所使用之引子 40
表三、本論文所使用之質體 41
表四、本論文所使用之抗體 43
圖一、酸性pH對ColV殺菌力以及對敏感菌抵抗ColV毒殺之影響 44
圖二、gad系列基因突變對ColV殺菌力之影響 45
圖三、gad系列基因突變對敏感菌抵抗ColV毒殺之影響 46
圖四、gad系列基因突變對cvi-cvaC、cvaAB啟動子活性之影響 47
圖五、酸性pH對cvi-cvaC、cvaAB啟動子活性之影響 48
圖六、pBluescript-cvi-cvaC及pACYC184-cvaA-cvaB質體建構 49
圖七、CvaA、CvaB及CvaC的表現 50
圖八、酸性pH和gadW突變對ColV合成和分泌的影響 51
圖九、mdtEF突變對ColV殺菌力以及對敏感菌抵抗ColV毒殺之影響 52
圖十、酸性pH影響ColV殺菌力所透過的可能機制 53
附圖一、GadX及GadW調控網絡 54
1. Baquero, F., D. Bouanchaud, M. C. Martinez-Perez, and C. Fernandez. 1978. Microcin plasmids: a group of extrachromosomal elements coding for low-molecular-weight antibiotics in Escherichia coli. J Bacteriol 135:342-7.
2. Benedetti, H., M. Frenette, D. Baty, M. Knibiehler, F. Pattus, and C. Lazdunski. 1991. Individual domains of colicins confer specificity in colicin uptake, in pore-properties and in immunity requirement. J Mol Biol 217:429-39.
3. Bentley, R., and R. Meganathan. 1982. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46:241-80.
4. Bertin, P., F. Hommais, E. Krin, O. Soutourina, C. Tendeng, S. Derzelle, and A. Danchin. 2001. H-NS and H-NS-like proteins in Gram-negative bacteria and their multiple role in the regulation of bacterial metabolism. Biochimie 83:235-41.
5. Boyer, A. E., and P. C. Tai. 1998. Characterization of the cvaA and cvi promoters of the colicin V export system: iron-dependent transcription of cvaA is modulated by downstream sequences. J Bacteriol 180:1662-72.
6. Braun, V., S. I. Patzer, and K. Hantke. 2002. Ton-dependent colicins and microcins: modular design and evolution. Biochimie 84:365-80.
7. Caldon, C. E., P. Yoong, and P. E. March. 2001. Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol 41:289-97.
8. Cascales, E., S. K. Buchanan, D. Duche, C. Kleanthous, R. Lloubes, K. Postle, M. Riley, S. Slatin, and D. Cavard. 2007. Colicin biology. Microbiol Mol Biol Rev 71:158-229.
9. Castanie-Cornet, M. P., and J. W. Foster. 2001. Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147:709-15.
10. Castanie-Cornet, M. P., T. A. Penfound, D. Smith, J. F. Elliott, and J. W. Foster. 1999. Control of acid resistance in Escherichia coli. J Bacteriol 181:3525-35.
11. Chehade, H., and V. Braun. 1988. Iron-regulated synthesis and uptake of colicin V. FEMS Microbiol. Lett. 52:177-182.
12. Chumchalova, J., and J. Smarda. 2003. Human tumor cells are selectively inhibited by colicins. Folia Microbiol (Praha) 48:111-5.
13. Cleveland, J., T. J. Montville, I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1-20.
14. Cotter, P. D., C. G. Gahan, and C. Hill. 2001. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40:465-75.
15. Cotter, P. D., C. Hill, and R. P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777-88.
16. Cotter, P. D., K. O'Reilly, and C. Hill. 2001. Role of the glutamate decarboxylase acid resistance system in the survival of Listeria monocytogenes LO28 in low pH foods. J Food Prot 64:1362-8.
17. Critchley, I. A., M. J. Basker, R. A. Edmondson, and S. J. Knott. 1991. Uptake of a catecholic cephalosporin by the iron transport system of Escherichia coli. J Antimicrob Chemother 28:377-88.
18. Datsenko, K. A., and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640-5.
19. De Biase, D., A. Tramonti, F. Bossa, and P. Visca. 1999. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32:1198-211.
20. Diep, D. B., M. Skaugen, Z. Salehian, H. Holo, and I. F. Nes. 2007. Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A 104:2384-9.
21. Dinh, T., I. T. Paulsen, and M. H. Saier, Jr. 1994. A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol 176:3825-31.
22. Fath, M. J., and R. Kolter. 1993. ABC transporters: bacterial exporters. Microbiol Rev 57:995-1017.
23. Fath, M. J., H. K. Mahanty, and R. Kolter. 1989. Characterization of a purF operon mutation which affects colicin V production. J Bacteriol 171:3158-61.
24. Foster, J. W. 2004. Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898-907.
25. Gerard, F., N. Pradel, and L. F. Wu. 2005. Bactericidal activity of colicin V is mediated by an inner membrane protein, SdaC, of Escherichia coli. J Bacteriol 187:1945-50.
26. Gilson, L., H. K. Mahanty, and R. Kolter. 1987. Four plasmid genes are required for colicin V synthesis, export, and immunity. J Bacteriol 169:2466-70.
27. Gilson, L., H. K. Mahanty, and R. Kolter. 1990. Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J 9:3875-84.
28. Gong, S., Z. Ma, and J. W. Foster. 2004. The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli. Mol Microbiol 54:948-61.
29. Gratia, A. 1925. Sur un remarquable exemple d’antagonisme entre deux souches de colibacille. C. R. Soc. Biol. (Paris) 93:1040–1041.
30. Gratia, A., and P. Fredericq. 1946. Diversite´ des souches antibiotiques de Bacterium coli et e´tendue variable de leur champ d’action. C. R. Soc. Biol.(Paris) 140:1032–1033.
31. Havarstein, L. S., H. Holo, and I. F. Nes. 1994. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. Microbiology 140 (Pt 9):2383-9.
32. Hersh, B. M., F. T. Farooq, D. N. Barstad, D. L. Blankenhorn, and J. L. Slonczewski. 1996. A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 178:3978-81.
33. Higgins, C. F., I. D. Hiles, G. P. Salmond, D. R. Gill, J. A. Downie, I. J. Evans, I. B. Holland, L. Gray, S. D. Buckel, A. W. Bell, and et al. 1986. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323:448-50.
34. Hudault, S., J. Guignot, and A. L. Servin. 2001. Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut 49:47-55.
35. Hwang, J., M. Manuvakhova, and P. C. Tai. 1997. Characterization of in-frame proteins encoded by cvaA, an essential gene in the colicin V secretion system: CvaA* stabilizes CvaA to enhance secretion. J Bacteriol 179:689-96.
36. Hwang, J., X. Zhong, and P. C. Tai. 1997. Interactions of dedicated export membrane proteins of the colicin V secretion system: CvaA, a member of the membrane fusion protein family, interacts with CvaB and TolC. J Bacteriol 179:6264-70.
37. Ito, K. National BioResource Project. NBRP E. coli, Microbial Genetics Laboratory, National Institute of Genetics, Japan.
38. Iyer, R., C. Williams, and C. Miller. 2003. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185:6556-61.
39. James, R., C. Kleanthous, and G. R. Moore. 1996. The biology of E colicins: paradigms and paradoxes. Microbiology 142 (Pt 7):1569-80.
40. Klaenhammer, T. R. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70:337-49.
41. Kobayashi, A., H. Hirakawa, T. Hirata, K. Nishino, and A. Yamaguchi. 2006. Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J Bacteriol 188:5693-703.
42. Lancaster, L. E., W. Wintermeyer, and M. V. Rodnina. 2007. Colicins and their potential in cancer treatment. Blood Cells Mol Dis 38:15-8.
43. Lange, R., and R. Hengge-Aronis. 1994. The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8:1600-12.
44. Lazdunski, C. J., E. Bouveret, A. Rigal, L. Journet, R. Lloubes, and H. Benedetti. 1998. Colicin import into Escherichia coli cells. J Bacteriol 180:4993-5002.
45. Likhacheva, N. A., V. V. Samsonov, and S. P. Sineoky. 1996. Genetic control of the resistance to phage C1 of Escherichia coli K-12. J Bacteriol 178:5309-15.
46. Lloubes, R., E. Cascales, A. Walburger, E. Bouveret, C. Lazdunski, A. Bernadac, and L. Journet. 2001. The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? Res Microbiol 152:523-9.
47. Ma, Z., S. Gong, H. Richard, D. L. Tucker, T. Conway, and J. W. Foster. 2003. GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 49:1309-20.
48. Ma, Z., N. Masuda, and J. W. Foster. 2004. Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J Bacteriol 186:7378-89.
49. Ma, Z., H. Richard, and J. W. Foster. 2003. pH-Dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J Bacteriol 185:6852-9.
50. Ma, Z., H. Richard, D. L. Tucker, T. Conway, and J. W. Foster. 2002. Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J Bacteriol 184:7001-12.
51. Masui, Y., J. Coleman, and M. Inouye. 1983. Multipurpose expression cloning vehicles in Eschefichia coli, p. 28-32. In M. Inouye (ed.), Experimental manipulation of gene expression. Academic Press, Inc., New York.
52. Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
53. Nishino, K., Y. Inazumi, and A. Yamaguchi. 2003. Global analysis of genes regulated by EvgA of the two-component regulatory system in Escherichia coli. J Bacteriol 185:2667-72.
54. Nishino, K., Y. Senda, and A. Yamaguchi. 2008. The AraC-family regulator GadX enhances multidrug resistance in Escherichia coli by activating expression of mdtEF multidrug efflux genes. J Infect Chemother 14:23-9.
55. Opdyke, J. A., J. G. Kang, and G. Storz. 2004. GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 186:6698-705.
56. Richard, H., and J. W. Foster. 2004. Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186:6032-41.
57. Riley, M. A., and J. E. Wertz. 2002. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117-37.
58. Rowbury, R. J., and M. Goodson. 1994. Acid pH responses of Escherichia coli: inhibition of colicin V synthesis and activity at pH 5.0. Microbios 80:189-202.
59. Sambrook, J., and D. W. Russell. 2001. Preparation of Plasmid DNA by Alkaline Lysis with SDS: Minipreparation, p. 1.32-1.34. Molecular Cloning. Third edition. vol. 1
60. Sanders, J. W., K. Leenhouts, J. Burghoorn, J. R. Brands, G. Venema, and J. Kok. 1998. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299-310.
61. Small, P. L., and S. R. Waterman. 1998. Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol 6:214-6.
62. Smith, D. K., T. Kassam, B. Singh, and J. F. Elliott. 1992. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol 174:5820-6.
63. Smith, H. W., and M. B. Huggins. 1976. Further observations on the association of the colicine V plasmid of Escherichia coli with pathogenicity and with survival in the alimentary tract. J Gen Microbiol 92:335-50.
64. Tramonti, A., P. Visca, M. De Canio, M. Falconi, and D. De Biase. 2002. Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184:2603-13.
65. Wandersman, C., and P. Delepelaire. 1990. TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci U S A 87:4776-80.
66. Wang, Y. S. 2007. The mechanism whereby acid stress affect colicin V production and resistance of bacteria. Master Thesis. Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei.
67. Waterman, S. R., and P. L. Small. 1996. Identification of σs-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri. Mol Microbiol 21:925-40.
68. Yang, C. C., and J. Konisky. 1984. Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol 158:757-9.
69. Yim, L., M. Martinez-Vicente, M. Villarroya, C. Aguado, E. Knecht, and M. E. Armengod. 2003. The GTPase activity and C-terminal cysteine of the Escherichia coli MnmE protein are essential for its tRNA modifying function. J Biol Chem 278:28378-87.
70. Zhang, L. H., M. J. Fath, H. K. Mahanty, P. C. Tai, and R. Kolter. 1995. Genetic analysis of the colicin V secretion pathway. Genetics 141:25-32.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top