|
Battaglia, G.; Busceti, C.L.; Molinaro, G.; Biagioni, F.; Traficante, A.; Nicoletti, F.; and Bruno, V. Pharmacological Activation of mGlu4 Metabotropic Glutamate Receptors Reduces Nigrostriatal Degeneration in Mice Treated with 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine. J. Neurosci., 26:7222-7229, 2006.
Becker, A.; Peters, B.; Schroeder, H.; Mann, T.; Huether, G.; and Grecksch, G. Ketamine-induced changes in rat behaviour: A possible animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 27:687-700, 2003.
Braff, D.L., and Geyer, M. Sensorimotor gating and schizophrenia: human and animal model studies. Arch Gen Psychiatry, 47(181-188), 1990.
Castellani, S., and Adams, P.M. Acute and chronic phencyclidine effects on locomotor activity, stereotypy, and ataxia in rats. Euro. J Pharmacol, 73:145-154, 1981.
Deng, X.; Ladenheim, B.; Jayanthi, S.; and Cadet, J.L. Methamphetamine Administration Causes Death of Dopaminergic Neurons in the Mouse Olfactory Bulb. Biol. Psychi., 61:1235-1243, 2007.
Duncan, G.E.; Moy, S.S.; Knapp, D.J.; Mueller, R.A.; and Breese, G.R. Metabolic mapping of the rat brain after subanesthetic doses of ketamine: potential relevance to schizophrenia. Brain Res, 787:181-190, 1998.
Goff, D.C., and Coyle, J.T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry(158:1367-1377), 2001.
Goto, Y., and O'Donnell, P. Delayed mesolimbic system alteration in a developmental animal model of schizophrenia. Jorunal of Neuroscience, 22:9070-9077, 2002.
Halpern, M., and Mart´ınez-Marcos, A. Structure and function of the vomeronasal system: an update. Progress in Neurobiology, 70:245-318, 2003.
Imre, G.; Fokkema, D.S.; Den Boer, J.A.; and Ter Horst, G.J. Dose-response characteristics of ketamine effect on locomotion, cognitive function and central neuronal activity. Brain Res Bull, 69:338-345, 2006a.
Imre, G.; Salomons, A.; Jongsma, M.; Fokkema, D.S.; Den Boer, J.A.; and Ter Horst, G.J. Effects of the mGluR2/3 agonist LY379268 on ketamine-evoked behaviours and neurochemical changes in the dentate gyrus of the rat. Pharmacology, Biochemistry and Behavior, 84:392-399, 2006b.
Javitt, D.C.; Balla, A.; Sershen, H.; and Lajtha, A. Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biol Psychiatry, 45:668-679, 1999.
Jentsch, J.D., and Roth, R.H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 20:201-225, 1999.
Kemp, J.A., and R.M., M. NMDA receptor pathways as drug targets. Nat Neurosci, 5(1):1039-1042, 2002.
Kilts, C.D. The Changing Roles and Targets for Animal Models of Schizophrenia. BIOL PSYCHIATRY, 50:845-855, 2001.
Kinney, G.G.; Sur, C.; Burno, M.; Mallorga, P.J.; Williams, J.B.; Figueroa, D.J.; Wittmann, M.; Lemaire, W.; and Conn, P.J. The Glycine Transporter Type 1 Inhibitor N-[3-(4_-Fluorophenyl)-3-(4_-Phenylphenoxy)Propyl]Sarcosine Potentiates NMDA Receptor-Mediated Responses In Vivo and Produces an Antipsychotic Profile in Rodent Behavior. The Journal of Neuroscience, 23(20):7586-7591, 2003.
Krystal, J.H.; Anand, A.; and Moghaddam, B. Effects of NMDA receptor antagonists: implications for the pathophysiology of schizophrenia. Arch Gen Psychiatry, 59(663-664), 2002.
Krystal, J.H.; Karper, L.P.; Seibyl, J.P.; Freeman, G.K.; Delaney, R.; Bremner, J.D.; Heninger, G.R.; Bowers, M.B.J.; and Charney, D.S. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry, 51:119-214, 1994.
Krystal, J.H.; Perry, E.B.J.; Gueorguieva, R.; Belger, A.; Madonick, S.H.; Abi-Dargham, A.; Cooper, T.B.; Macdougall, L.; Abi-Saab, W.; and D'Souza, D.C. Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch Gen Psychiatry, 62:985-994, 2005.
Kumari, V.; Soni, W.; Mathew, V.M.; and Sharma, T. Prepulse inhibition of the startle response in men with schizophrenia: effects of age of onset of illness, symptoms, and medication. Arch Gen Psychiatry, 57:609-614, 2000.
Kumari, V.; Soni, W.; and Sharma, T. Normalization of information processing deficits in schizophrenia with clozapine. Am J Psychiatry, 156:1046-1051, 1999.
McGhie, A., and Chapman, J. Disorders of attention and perception in early schizophrenia. Br J Med Psychol, 34:102-116, 1961.
Mejı´as, R.; Villadiego, J.; Pintado, C.O.; Vime, P.J.; Gao, L.; Toledo-Aral, J.J.; Echevarrı´a, M.; and Lo´pez-Barneo, J. Neuroprotection by Transgenic Expression of Glucose-6-Phosphate Dehydrogenase in Dopaminergic Nigrostriatal Neurons of Mice. J. Neurosci., 26:4500-4508, 2006.
Morgan, J.I., and Curran, T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci, 14:421-451, 1991.
Nishizawa, N.; Nakao, S.; Nagata, A.; Hirose, T.; Masuzawa, M.; and Shingu, K. The effect of ketamine isomers on both mice behavioral responses and c-Fos expression in the posterior cingulate and retrosplenial cortices. Brain Res, 857:188-192, 2000.
Olney, J.W.; Newcomer, J.W.; and Farber, N.B. NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res, 33:523-533, 1999.
Perry, W., and Braff, D.L. Information-processing deficits and thought disorder in schizophrenia. Am J Psychiatry, 151:363-367, 1994.
Pietersen, C.Y.; Bosker, F.J.; Postema, F.; Fokkema, D.S.; Korf, J.; and den Boer, J.A. Ketamine administration disturbs behavioural and distributed neural correlates of fear conditioning in the rat. Prog.Neuro-Psychopharmacol. Biological Psychi, 30:1209-1218, 2006.
Razoux, F.; Garcia, R.; and Lena, I. Ketamine, at a Dose that Disrupts Motor Behavior and Latent Inhibition, Enhances Prefrontal Cortex Synaptic Efficacy and Glutamate Release in the Nucleus Accumbens. Neuropsychopharmacology, 32(3):719-727, 2007.
Roche, M.; Harkin, A.; and Kelly, J.P. Chronic Fluoxetine Treatment Attenuates Stressor-Induced Changes in Temperature, Heart Rate, and Neuronal Activation in the Olfactory Bulbectomized Rat. Neuropsychopharmacology, 32:1312-1320, 2007.
Schizophrenia.com. Overview of Schizophrenia. Available at: http://www.schizophrenia.com/family/sz.overview.htm Accessed May 13, 2008
Shen, E.; Dun, S.L.; Ren, C.; Bennett-Clarke, C.; and Dun, N.J. Hypotension preferentially induces c-fos immunoreactivity in supraoptic vasopressin neurons. Brain Res, 593:136-139, 1992.
Shen, E.; Dun, S.L.; Ren, C.; and Dun, N.J. Hypovolemia induces Fos-like immunoreactivity in neurons of the rat supraoptic and paraventricular nuclei. J Auton Nerv Syst, 37:227-230, 1992.
Shih, C.D.; Chan, S.H.; and Chan, J.Y. Participation of Fos protein at the nucleus tractus solitarius in inhibitory modulation of baroreceptor reflex response in the rat. Brain Res, 738:39-47, 1996.
Stoet, G., and Snyder, L.H. Effects of the NMDA antagonist ketamine on task-switching performance: evidence for specific impairments of executive control. Neuropsychopharmacology, 31:1675-1681, 2006.
Swerdlow, N.R.; Braff, D.L.; Taaid, N.; and Geyer, M. Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry, 51:139-154, 1994.
Tenn, C.C.; Fletcher, P.J.; and Shitij, K. Amphetamine-sensitized animals show a sensorimotor gating and neurochemical abnormality similar to that of schizophrenia. Schizophrenia Research, 64:103-114, 2003.
Tenn, C.C.; Fletcher, P.J.; and Shitij, K. Amphetamine-sensitized animals show a sensorimotor gating and neurochemical abnormality similar to that of schizophrenia. Schizophrenia Research, 64:103-114, 2003.
Verma, A., and Moghaddam, B. NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. Jorunal of Neuroscience, 16:373-379, 1996.
Wang, J.H.; Fu, Y.; Wilson, F.A.; and Ma, Y.Y. Ketamine affects memory consolidation: differential effects in T-maze and passive avoidance paradigms in mice. Neuroscience, 140:993-1002, 2006.
郭書瑋; Study of the Behavior and Brain Region c-Fos Expression after Chronic Subanesthetic Dose of Ketamine Followed by 7 Days Withdrawal and a Further Challenge in Rats. 陽明大學碩士論文, 2006.
|