跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 11:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍晨瑋
研究生(外文):Chen-Wei Lan
論文名稱:將間質幹細胞分化為子宮肌層細胞:可應用於修補子宮缺損以避免日後懷孕時植入性胎盤及子宮破裂之風險
論文名稱(外文):Differentiation of mesenchymal stem cells into myometrial cells: potential application in repair of uterine defects to prevent placenta accreta and uterine rupture in subsequent pregnancies
指導教授:宋晏仁宋晏仁引用關係李新揚李新揚引用關係
指導教授(外文):Yen-Jen SungHsin-Yang Li
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:解剖暨細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:間質幹細胞乙型轉型生長因子纖維粘連蛋白壞血酸滋養層細胞
外文關鍵詞:mesenchymal stem cellstransforming growth factor-beta1fibronectinascorbic acidtrophoblast cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大規模的子宮手術會造成顯著的子宮肌肉層缺損,並可能導致嚴重的併發症,包括了日後懷孕時發生植入性胎盤及子宮破裂。最近報導顯示分離自骨髓之間質幹細胞(mesenchymal stem cells)具有自我更新的能力並可分化形成不同胚層的細胞,包括屬於中胚層的平滑肌細胞。因此,間質幹細胞應可用於強化子宮肌肉層缺損之修補,以預防子宮手術後之嚴重後遺症,然而目前仍未有相關研究。
本研究中,我們計畫運用間質幹細胞的獨特性質,以治療子宮肌肉層缺損。首先,我們研究乙型轉型生長因子(transforming growth factor-beta1)、纖維粘連蛋白(fibronectin)及壞血酸(ascorbic acid),對於誘導間質幹細胞分化形成類平滑肌細胞(smooth muscle cells)是否具有協同作用,接著再進行動物實驗,以間質幹細胞移植修復子宮肌肉層的受損。在活體外,我們發現乙型轉型生長因子、纖維粘連蛋白及壞血酸皆能促使間質幹細胞分化形成類平滑肌細胞,可從平滑肌細胞標記蛋白calponin的表現量增加看出,而這些誘導因子之促進平滑肌細胞分化效果具有協同作用。接著我們利用共同培養模式,來檢視這些經體外分化形成之類平滑肌細胞是否能抵擋滋養層細胞(trophoblast cells)的入侵,以探討其預防植入性胎盤的可能性。我們發現間質幹細胞分化形成的類平滑肌細胞相較於未分化的間質幹細胞有較強的抵擋滋養層細胞入侵能力,雖然未能達到直接分離自子宮肌肉層的平滑肌細胞其抵擋滋養層細胞入侵的能力。最後,我們建立了一個修補子宮缺損的動物實驗模式,發現於缺損處注射間質幹細胞可加速子宮缺損的修補,而且在修補完成的子宮切片偵測到注入的間質幹細胞。我們的研究結果顯示間質幹細胞可被誘導分化為類平滑肌細胞,並能應用在子宮肌肉層的修補,嘉惠接受子宮肌肉層大規模切除手術之婦女。
Extensive uterine surgery may cause significant myometrial defects that may lead to severe sequelae, including placenta accreta and uterine rupture during subsequent pregnancy. Recent evidences have suggested that mesenchymal stem cells (MSCs) derived from bone marrow are capable of self renewal and differentiation into three germ layers, including smooth muscle cells of mesodermal origin. Therefore, it is likely that MSCs may be used to strengthen the repair of myometrial defects and prevent severe sequalae following major uterine operations. However, to date there has been no study on the application of MSCs to uterine repair.
In this study, we developed an effective therapeutic alternative, utilizing the unique features of MSCs, to treat uterine defects. We investigated whether transforming growth factor-beta1 (TGF-beta1), fibronectin and ascorbic acid could synergistically induce MSCs to acquire the phenotypical characteristics of smooth muscle cells (SMCs), followed by transplantation to repair uterine defects in an animal model. In vitro, MSCs were found to differentiate to SMC-like cells in response to TGF-beta1, fibronectin and ascorbic acid, as revealed by the up-regulated expression of calponin. Furthermore, we demonstrated synergistic effects of TGF-beta1, fibronectin and ascorbic acid on MSC differentiation into SMC-like cells. Furthermore, the ability of these MSC-derived SMC-like cells to resist trophoblast invasion was examined using a co-culture model, thereby investigating their potential application to prevent placenta accreta. As compared with undifferentiated MSCs, MSC-derived SMC-like cells more efficiently resisted trophoblast invasion, though not as effectively as freshly isolated myometrial cells. Finally, we established an animal model of uterine defect repair. Injection of MSCs into the myometrial defects was shown to accelerate the repair of defects and MSCs were detected in the uterine tissue sections at the end of the repair process. Our results demonstrated that MSCs could be differentiated into SMC-like cells and utilized to repair myometrial defects, thereby benefitting women undergoing uterine surgery with extensive myometrial resection.
中文摘要...................................................6
Abstract...................................................8
Chapter 1. Introduction...................................10
A.Uterine surgery increases the risks of uterine rupture and placenta accreta in subsequent pregnancies............10
B.It is feasible to repair uterine defects by using adequately differentiated mesodermal cells from human bone-marrow-derived mesenchymal stem cell......................15
C.Purpose................................................28
Chapter 2. Materials & Methods............................29
A.Cell culture...........................................29
B.Cell treatments........................................31
C.Measurement of spheroid expansion on monolayers of various cell types........................................32
D.Cell survival analysis.................................33
E.Immunocytochemistry....................................33
F.Immunoblotting assay...................................34
G.Uterine defect model...................................35
H.MSC transplantation....................................36
I.In vivo wound healing analysis.........................36
J.Histologic examination.................................36
K.Statistical analysis...................................37
Chapter 3. Results........................................38
A.Effects of TGF-beta1 on mesodermal differentiation of MSC.......................................................38
B.Effects of fibronectin on mesodermal differentiation of MSC.......................................................39
C.Combined effects of TGF-beta1, fibronectin and ascorbic acid on mesodermal differentiation of MSC.................40
D.Ability of MSC-derived mesodermal cells to resist trophoblast invasion......................................41
E.A SD-rat model for uterine defects.....................42
F.MSC promotes uterine defect healing....................43
G.Determining whether the in vivo newly-formed myometrial cells are generated by transplanted hMSCs.................43
Chapter 4. Discussion.....................................45
A.Effects of factors other than TGF-beta1, fibronectin and AA on mesodermal differentiation of MSC...................45
B.Functional roles of MSC-derived mesodermal cells in resisting trophoblast invasion............................46
C.The mechanisms underlying the differentiation of SMCs from MSCs.................................................46
D.Determining whether the accelerated repair of myometrial defects is mediated by paracrine effects or transdifferentiation of transplanted MSCs.................48
E.Determining whether MSCs have the ability to suppress the inflammatory response.................................48
References................................................67
Arakawa E, Hasegawa K, Yanai N, Obinata M and Matsuda Y (2000) A mouse bone marrow stromal cell line, TBR-B, shows inducible expression of smooth muscle-specific genes. FEBS Lett 481: 193-6

Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M and Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221-8

Assoian RK, Komoriya A, Meyers CA, Miller DM and Sporn MB (1983) Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 258: 7155-60

Aszodi A, Legate KR, Nakchbandi I and Fassler R (2006) What mouse mutants teach us about extracellular matrix function. Annu Rev Cell Dev Biol 22: 591-621

Bandyopadhyay B, Fan J, Guan S, Li Y, Chen M, Woodley DT and Li W (2006) A "traffic control" role for TGFbeta3: orchestrating dermal and epidermal cell motility during wound healing. J Cell Biol 172: 1093-105

Barry FP and Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36: 568-84

Beck K, Hunter I and Engel J (1990) Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J 4: 148-60

Callahan N, Modesto A, Deeley K, Meira R and Vieira AR (2009) Transforming growth factor-alfa gene (TGFA), human tooth agenesis, and evidence of segmental uniparental isodisomy. Eur J Oral Sci 117: 20-6

Charbord P, Lerat H, Newton I, Tamayo E, Gown AM, Singer JW and Herve P (1990) The cytoskeleton of stromal cells from human bone marrow cultures resembles that of cultured smooth muscle cells. Exp Hematol 18: 276-82

Chen G and Khalil N (2006) TGF-beta1 increases proliferation of airway smooth muscle cells by phosphorylation of map kinases. Respir Res 7: 2

Chen S and Lechleider RJ (2004) Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res 94: 1195-202

Clark SL, Koonings PP and Phelan JP (1985) Placenta previa/accreta and prior cesarean section. Obstet Gynecol 66: 89-92

Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S, Bo P, Nussdorfer GG and Parnigotto PP (2006) CD105(+) cells from Wharton's jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 18: 1089-96

De Bari C, Dell'Accio F, Tylzanowski P and Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44: 1928-42

De Coppi P, Bartsch G, Jr., Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S and Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25: 100-6

De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J and Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174: 101-9

Deasy BM, Jankowski RJ and Huard J (2001) Muscle-derived stem cells: characterization and potential for cell-mediated therapy. Blood Cells Mol Dis 27: 924-33

Dennis JE and Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20: 205-14

Derynck R and Feng XH (1997) TGF-beta receptor signaling. Biochim Biophys Acta 1333: F105-50

Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB and Goeddel DV (1985) Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316: 701-5

di Gioia CR, van de Greef WM, Sperti G, Castoldi G, Todaro N, Ierardi C, Pieruzzi F and Stella A (2000) Angiotensin II increases calponin expression in cultured rat vascular smooth muscle cells. Biochem Biophys Res Commun 279: 965-9

Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L and San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277: 4223-31

Dudas M, Nagy A, Laping NJ, Moustakas A and Kaartinen V (2004) Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway. Dev Biol 266: 96-108

Dulin NO, Orlov SN, Kitchen CM, Voyno-Yasenetskaya TA and Miano JM (2001) G-protein-coupled-receptor activation of the smooth muscle calponin gene. Biochem J 357: 587-92

Ezechi OC, Kalu BK, Njokanma FO, Nwokoro CA and Okeke GC (2004) Emergency peripartum hysterectomy in a Nigerian hospital: a 20-year review. J Obstet Gynaecol 24: 372-3

Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D and Carson P (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13: 1299-312

Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G and Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279: 1528-30
Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA and O'Driscoll SW (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage 11: 55-64

Galmiche MC, Koteliansky VE, Briere J, Herve P and Charbord P (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82: 66-76

Garat C, Van Putten V, Refaat ZA, Dessev C, Han SY and Nemenoff RA (2000) Induction of smooth muscle alpha-actin in vascular smooth muscle cells by arginine vasopressin is mediated by c-Jun amino-terminal kinases and p38 mitogen-activated protein kinase. J Biol Chem 275: 22537-43

Gong Z and Niklason LE (2008) Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 22: 1635-48

Granero-Molto F, Weis JA, Longobardi L and Spagnoli A (2008) Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin Biol Ther 8: 255-68

Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18: 685-716

Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K and Nishida E (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem 274: 27161-7

Hautmann MB, Thompson MM, Swartz EA, Olson EN and Owens GK (1997) Angiotensin II-induced stimulation of smooth muscle alpha-actin expression by serum response factor and the homeodomain transcription factor MHox. Circ Res 81: 600-10

Hayashi K, Takahashi M, Nishida W, Yoshida K, Ohkawa Y, Kitabatake A, Aoki J, Arai H and Sobue K (2001) Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res 89: 251-8

Herpin A, Lelong C and Favrel P (2004) Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28: 461-85

Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL and Lo WH (2002) Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 20: 249-58

Imaizumi T, Akita S, Akino K and Hirano A (2007) Acceleration of sensory neural regeneration and wound healing with human mesenchymal stem cells in immunodeficient rats. Stem Cells 25: 2956-63

Javazon EH, Keswani SG, Badillo AT, Crombleholme TM, Zoltick PW, Radu AP, Kozin ED, Beggs K, Malik AA and Flake AW (2007) Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen 15: 350-9

Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Bae YC, Jung JS and Kim JH (2006) Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. J Cell Sci 119: 4994-5005

Kastner ES, Figueroa R, Garry D and Maulik D (2002) Emergency peripartum hysterectomy: experience at a community teaching hospital. Obstet Gynecol 99: 971-5

Kim MR, Jeon ES, Kim YM, Lee JS and Kim JH (2009) Thromboxane a(2) induces differentiation of human mesenchymal stem cells to smooth muscle-like cells. Stem Cells 27: 191-9

Kinner B and Spector M (2002) Expression of smooth muscle actin in osteoblasts in human bone. J Orthop Res 20: 622-32

Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K, Ghadami M, Yamada K, Kondo S, Ikegawa S, Nishimura G, Fukushima Y, Nakagomi T, Saito H, Sugimoto T, Kamegaya M, Hisa K, Murray JC, Taniguchi N, Niikawa N and Yoshiura K (2000) Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet 26: 19-20

Le Blanc K and Ringden O (2005) Use of mesenchymal stem cells for the prevention of immune complications of hematopoietic stem cell transplantation. Haematologica 90: 438

Liu TB, Fedak PW, Weisel RD, Yasuda T, Kiani G, Mickle DA, Jia ZQ and Li RK (2004) Enhanced IGF-1 expression improves smooth muscle cell engraftment after cell transplantation. Am J Physiol Heart Circ Physiol 287: H2840-9

Lockman K, Hinson JS, Medlin MD, Morris D, Taylor JM and Mack CP (2004) Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. J Biol Chem 279: 42422-30

Miller DA, Chollet JA and Goodwin TM (1997) Clinical risk factors for placenta previa-placenta accreta. Am J Obstet Gynecol 177: 210-4

Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG and Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100: 5807-12

Muller-Sieburg CE, Cho RH, Thoman M, Adkins B and Sieburg HB (2002) Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100: 1302-9

Nakagawa H, Akita S, Fukui M, Fujii T and Akino K (2005) Human mesenchymal stem cells successfully improve skin-substitute wound healing. Br J Dermatol 153: 29-36

Narita Y, Yamawaki A, Kagami H, Ueda M and Ueda Y (2008) Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell Tissue Res 333: 449-59

Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG and Tuan RS (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 20: 1060-9

Owens GK, Kumar MS and Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84: 767-801

Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW and Yarmush ML (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One 2: e941

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-7

Pittenger MF and Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95: 9-20

Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71-4
Roelen BA and Dijke P (2003) Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci 8: 740-8

Runyan CE, Schnaper HW and Poncelet AC (2004) The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-beta1. J Biol Chem 279: 2632-9

Shah NM, Groves AK and Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85: 331-43

Siegel N, Rosner M, Hanneder M, Valli A and Hengstschlager M (2007) Stem cells in amniotic fluid as new tools to study human genetic diseases. Stem Cell Rev 3: 256-64

Sinha S, Hoofnagle MH, Kingston PA, McCanna ME and Owens GK (2004) Transforming growth factor-beta1 signaling contributes to development of smooth muscle cells from embryonic stem cells. Am J Physiol Cell Physiol 287: C1560-8

Spitz IM, Bardin CW, Benton L and Robbins A (1998) Early pregnancy termination with mifepristone and misoprostol in the United States. N Engl J Med 338: 1241-7

Suner S, Jagminas L, Peipert JF and Linakis J (1996) Fatal spontaneous rupture of a gravid uterus: case report and literature review of uterine rupture. J Emerg Med 14: 181-5

Sweeten KM, Graves WK and Athanassiou A (1995) Spontaneous rupture of the unscarred uterus. Am J Obstet Gynecol 172: 1851-5; discussion 1855-6

Usta IM, Hobeika EM, Musa AA, Gabriel GE and Nassar AH (2005) Placenta previa-accreta: risk factors and complications. Am J Obstet Gynecol 193: 1045-9

Walid MS and Heaton RL (2009) Laparoscopic myomectomy: an intent-to-treat study. Arch Gynecol Obstet

Walsh CA, O'Sullivan RJ and Foley ME (2006) Unexplained prelabor uterine rupture in a term primigravida. Obstet Gynecol 108: 725-7
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 生長、血管新生及侵犯相關因子在植入性胎盤形成所扮演的角色
2. 將人類胚胎幹細胞分化為卵巢顆粒細胞:可應用於多囊性卵巢症之治療及基因機轉之探討
3. 接受生殖科技懷孕婦女第一孕期身心症狀、因應行為與幸福安寧感之探討
4. 比較不孕後懷孕與自然懷孕婦女之產前及產後親子依附及其相關探討
5. 接受生殖科技成功懷孕的幼兒母親其親職壓力之探討
6. 懷孕過程母性任務之執行:探討曾有重覆性生育失敗經驗婦女再度懷孕之行為
7. 懷孕過程母性任務之執行:探討曾有重覆性生育失敗經驗婦女之行為
8. 骨髓間葉幹細胞治療心血管疾病之免疫調控潛能第一部份:移植自體骨髓間葉幹細胞治療植體動脈硬化第二部份:驅動內源性骨髓間葉幹細胞治療心肌梗塞
9. 以力元理論觀點探討真實果蠅懸停之氣動力機制
10. 接受人工協助生殖科技治療成功懷孕的婦女其心理健康與親職壓力—三角交叉研究
11. 腫瘤抑制子WWOX在MEK/ERK複合物形成中調控癌細胞凋亡所扮演的角色
12. 腫瘤抑制子WWOX在細胞間的識別與細胞移行中扮演重要的角色
13. 意外懷孕、意外生育、意外生命的「損害」―以比較法的分析及人性尊嚴觀點的評價為中心
14. 以定位突變探討Oxa-66乙內醯胺分解酶129位置對受質meropenem酵素動力學與酵素羧化的影響
15. 初孕婦孕期生產風險認知與自報擬採選擇性剖腹產之相關