跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 13:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王喬嬋
研究生(外文):Chiao-Chan Wang
論文名稱:樟芝菌絲與濾液多醣體之免疫調控與抗發炎作用
論文名稱(外文):Immunomodulatory and Anti-inflammatory Effects of Polysaccharides from Mycelia and Fermented Culture Broth of Antrodia camphorata
指導教授:蔡洪又欽李金木李金木引用關係
指導教授(外文):John Chin TsaihongKin-Mu Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:多醣體樟芝抗發炎免疫調控
外文關鍵詞:polysaccharidesAntrodia camphorataAnti-inflammatoryImmunomodulatory
相關次數:
  • 被引用被引用:7
  • 點閱點閱:1498
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來樟芝(Antrodia camphorata)已成為健康食品之來源,其生長於台灣特有之牛樟樹上,具抗癌、抗腫瘤及免疫調節等作用。本研究分別以樟芝的濾液與菌絲多醣體連續餵食BALB/c小鼠不同時間點,觀察是否具有抗發炎及增強免疫力之功效。分析小鼠服食樟芝的兩種多醣體對其免疫細胞,如巨噬細胞、T細胞、樹突狀細胞所產生之作用。研究結果顯示,長期餵食小鼠樟芝的兩種多醣體,再腹腔注射LPS使其產生發炎反應,經流式細胞儀測定分析,發現脾臟巨噬細胞上之Trem-1HI的表現受到抑制而下降,證實樟芝具有抗發炎的效果;樹突狀細胞上CD86呈現下降的現象;樹突狀細胞上之CD40HI、CD8αHI的表現均有增加趨勢;巨噬細胞上CD8αHI的表現也增加。其他協同刺激分子,如T細胞上ICOS的表現量增加與抗原呈獻細胞上CD86的表現下降,主要原因可能是CTLA-4參與調控平衡而抑制之。以RT-PCR觀察促發炎因子,發現細胞激素如TNF-α、IFN-γ、IL-4、IL-6、IL-10、IL-12有被抑制的現象。此外,利用Real-time PCR偵測Trem-1、IL-1β、iNOS的細胞激素之含量變化;Western blot觀察Trem-1的蛋白質表現,發現長期餵食後均有不錯的抗發炎功效。本論文研究結果顯示服食樟芝的兩種多醣體具有提升免疫力及抗發炎的功效,並從中探討各種免疫分子間相關之作用機轉。未來可考慮將所使用的細胞分子表面標記作為藥物作用篩選的標的物,進一步測試其他具有潛力的中草藥。
Antrodia camphorata grows on characterized Cinnamomum kanehirai in Taiwan, it has become the source of health food in recent years. A. camphorata has anticancer, antitumor and immunomodulatory properties. In this study, BALB/c mice were fed with polysaccharides obtained from fermented culture broth and mycelia of A. camphorata at different time points to investigate the anti-inflammatory action and the immunomodulatory effect. When mice were administrated with two kinds of polysaccharides for a period of time and then injected LPS into mice, we found that Trem-1HI expression on macrophages is inhibited measured by flow cytometry. This result indicates that A. camphorata has anti-inflammatory action. The expressions of CD40HI and CD8αHI markers on DCs and CD8αHI marker on macrophages increased apparently. However, the CD86 marker expressed on DCs decreased sharply, this result may regulated by the activation of CTLA-4 and ICOS from T cells. The TNF-α、IFN-γ、IL-4、IL-6、IL-10 and IL-12 mRNA cytokines inhibited obviously after feeding with A. camphorata by RT-PCR. In addition, we use real-time PCR to detect Trem-1、IL-1β and iNOS cytokine content and profile; also, to observe the expression of Trem-1 protein with western blot. The results demonstrated that two kinds of polysaccharides from A. camphorata possesses effects on both immunomodulation and anti-inflammation. These markers may serve as targets for further understanding the molecular basis and efficacy of A. camphorata and other Chinese herbal medicines in the future.
目 錄
頁次
目錄………………………………………………………………… I
表目錄………………………………………………………………III
圖目錄………………………………………………………………IV
中文摘要……………………………………………………………VII
英文摘要……………………………………………………………VIII

第一章 緒論……………………………………………………… 1
一、樟芝兩種萃取物成份…………………………………...1
二、生物體之免疫調節機制………………………………..2
三、發炎作用指標………………………………………………...5
四、研究動機……………………………………………………...8
第二章 材料與方法……………………………………………….9
一、實驗材料……………………………………………………...9
(一) 樟芝萃取物之製備………………………………..9
(二) 實驗動物……………………………………………….9
二、實驗設計…………………………………………………….10
三、實驗方法…………………………………………………….10
(一) 小鼠脾臟細胞之取得………………………………...10
(二) 以流式細胞技術分析偵測小鼠脾臟免疫細胞
表面標幟………………………………………….11
(三) 以反轉錄聚合酶連鎖反應(Reverse Transcription-Polymerase Chain Reaction ;RT-PCR)和即時定量聚合酶連鎖反應(Real-time quantitative PCR;Real-time PCR)分析相關細胞
激素之mRNA表現量…….....………...………..13
(四) 以西方轉漬法測定專一性蛋白表現…………...19
第三章 結果......................................................................................24
一、樟芝多醣體對小鼠脾臟免疫細胞之調控…………...24
(一) 免疫細胞表面標記測定…………………….…...24
(二) 以RT-PCR分析細胞激素之mRNA表現……….…32
(三) 以Real-time PCR分析細胞激素之mRNA表現.….34
(四) 小鼠脾臟細胞Trem-1 Protein之表現……...….36
第四章 討論…………………………….………………………….37
參考文獻……………………………………………………………..46














表 目 錄
頁次
表一、細胞激素寡核苷引子…………………………………….….59
表二、樟芝萃取物成分分析(%)…………………………………....60
表三、傳統PCR與即時定量PCR之比較………………………...61



















圖 目 錄
頁次
圖一、 餵食樟芝發酵培養液與菌絲體後於各時間點犧牲BALB/c
小鼠之脾臟細胞中DC細胞上CD11c+的表現百分比,以
流式細胞儀分析後之結果……………………………………62
圖二、 餵食樟芝發酵培養液與菌絲體後於各時間點犧牲BALB/c
小鼠之脾臟細胞中DC細胞上CD40的表現百分比,以流
式細胞儀分析後之結果………………………………………64
圖三、 餵食樟芝發酵培養液與菌絲體後於各時間點犧牲BALB/c
小鼠之脾臟細胞中DC細胞上CD8α的表現百分比,以流
式細胞儀分析後之結果………………………………………66
圖四、 餵食樟芝發酵培養液與菌絲體後於各時間點犧牲BALB/c
小鼠之脾臟細胞中DC細胞上CD86的表現百分比,以流
式細胞儀分析後之結果………………………………………68
圖五、 餵食樟芝發酵培養液與菌絲體後於各時間點犧牲BALB/c
小鼠之脾臟細胞中巨噬細胞上CD11b的數量表現百分比,
以流式細胞儀分析後之結果…………………………………70
圖六、 餵食樟芝發酵培養液與菌絲體後於各時間點犧牲BALB/c
小鼠之脾臟細胞中巨噬細胞上CD8α的表現百分比,以流
式細胞儀分析後之結果………………………………………72
圖七、 餵食樟芝發酵培養液與菌絲體後於各時間點犧牲BALB/c
小鼠之脾臟細胞中巨噬細胞上Trem-1的表現百分比,以流
式細胞儀分析後之結果………………………………………74
圖八、 餵食樟芝發酵培養液與菌絲體後於各時間點犧牲BALB/c
小鼠之脾臟細胞中T細胞上表現CD4+的細胞數量百分比,
以流式細胞儀分析後之結果………………………………….76
圖九、 餵食樟芝發酵培養液與菌絲體後於各時間點犧牲BALB/c
小鼠之脾臟細胞中T細胞上表現CD8α+的細胞數量百分比,以流式細胞儀分析後之結果……………………………….…78
圖十、 餵食樟芝發酵培養液與菌絲體後於各時間點犧牲BALB/c
小鼠之脾臟細胞中T細胞上ICOS的表現百分比,以流式
細胞儀分析後之結果…………………………………….…...80
圖十一、 以RT-PCR分析BALB/c小鼠經餵食樟芝發酵培養液各
時間點,腹腔注射LPS,16~18小時後犧牲,其脾臟細胞mRNA之表現………………………………………………..82
圖十二、 以Image quant 分析比較陽性對照組與餵食樟芝發酵培
養液各時間點之TNF-α、IFN-γ、IL-12 mRNA表現量….83
圖十三、 以RT-PCR分析BALB/c小鼠經餵食樟芝發酵培養液各
時間點,腹腔注射LPS,16~18小時後犧牲,其脾臟細胞mRNA之表現………………………………………….…….84
圖十四、 以Image quant分析比較陽性對照組與餵食樟芝發酵培
養液各時間點之IL-4、IL-6、IL-10 mRNA表現量……....85
圖十五、 以RT-PCR分析BALB/c小鼠經餵食樟芝菌絲體各時間
點,腹腔注射LPS,16~18小時後犧牲,其脾臟細胞
mRNA之表現…………………………………………..……86
圖十六、 以Image quant 分析比較陽性對照組與餵食樟芝菌絲體各
時間點之TNF-α、IFN-γ、IL-12 mRNA表現量…….……..87
圖十七、以RT-PCR分析BALB/c小鼠經餵食樟芝菌絲體各時間
點,腹腔注射LPS,16~18小時後犧牲,其脾臟細胞
mRNA之表現………………………………………………..88
圖十八、以Image quant分析比較陽性對照組與餵食樟芝菌絲體各
時間點之IL-4、IL-6、IL-10 mRNA表現量………………89
圖十九、以real-time PCR分析BALB/c小鼠經餵食樟芝發酵培養液
和菌絲體不同時間點後,腹腔注射LPS,16~18小時後犧牲,
其脾臟細胞Trem-1 mRNA之表現量……….……………….90
圖二十、以real-time PCR分析BALB/c小鼠經餵食樟芝發酵培養液
和菌絲體不同時間點後,腹腔注射LPS,16~18小時後犧牲,
其脾臟細胞IL-1β mRNA之表現量………………………….91




圖二十一、以real-time PCR分析BALB/c小鼠經餵食樟芝發酵培養
液和菌絲體不同時間點後,腹腔注射LPS,16~18小時後犧牲,其脾臟細胞iNOS mRNA之表現量……………….92
圖二十二、以Western blot分析餵食樟芝發酵培養液,經腹腔注射
LPS 16~18小時後犧牲之BALB/c小鼠脾臟細胞中
Trem-1 protein之表現………………………………………93
圖二十三、以Western blot分析餵食樟芝菌絲體,經腹腔注射
LPS 16~18小時後犧牲之BALB/c小鼠脾臟細胞中
Trem-1 protein之表現………………………………………95

附錄一、Real-time PCR之相關數據………………………………97
附錄二、圖示APC與T細胞之間的調控機制………………………...98
林清楠。2005。曼式血吸蟲發炎反應中TREM-1基因表現之研究。國立陽明大學碩士論文。

劉千瑈。2007。樟芝對樹突狀細胞之免疫調控作用與對巨噬細胞之抗發炎反應。國立陽明大學碩士論文。

鄭柏青。2008。日本血吸蟲基因體學與免疫學研究。國立陽明大學博士論文。

Aicher, A., Hayden-Ledbetter, M., Brady, W. A., Pezzutto, A., Richter, G., Magaletti, D., Buckwalter, S., Ledbetter, J. A. and Clark, E. A.. 2000. Characterization of human inducible costimulator ligand expression and function. J. Immunol. 164: 4689.

Banchereau, J. and Steinman, R. M.. 1998. Dendritic cells and the control of immunity. Nature. 392: 245-52.

Beier, K. C., Hutloff, A., Dittrich, A. M., Heuck, C., Rauch, A., Buchner, K., Ludewig, B., Ochs, H. D., Mages, H. W. and Kroczek, R. A.. 2000. Induction, binding specificity and function of human ICOS. Eur. J. Immunol. 30: 3707.

Bennett, S. R., Carbone, F. R., Karamalis, F., Miller, J. F. and Heath, W. R.. 1997. Induction of a CD8+ cytotoxic T lymphocyte response by crosspriming requires cognate CD4+ T cell help. J. Exp. Med. 186: 65-70.

Blaise, G. A., Gauvin, D., Gangal, M. and Authier, S.. 2005. Nitric oxide, cell signaling and cell death. Toxicology 208: 177-192.

Brodie, D., Collins, A. V., Iaboni, A., Fennelly, J. A., Sparks, L. M., Xu, X. N., van der Merwe, P. A. and Davis, S. J.. 2000. LICOS, a primordial costimulatory ligand. Curr. Biol. 10: 333.

Bruckdorfer, R.. 2005. The basics about nitric oxide. Mol. Aspects Med. 26: 3-31.
Coyle, A. J., Lehar, S., Lloyd, C., Tian, J., Delaney, T., Manning, S., Nguyen, T. and Burwell, T.. 2000. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13: 95-105.

Cao, L. Z. and Lin, Z. B.. 2003. Regulatory effect of Ganoderma lucidum polysaccharides on cytotoxic T-lymphocytes induced by dendritic cells in vitro. Acta. Pharmacol. Sin. 24: 321-326.

Carvalho, L. H., Sano, G. G. and Zavala, F.. 2002. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cells respones anainst malaria liver stages. Nat. Med. 8: 166-170.

Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A. and Alber, G.. 1996. Ligation of CD40 on dendritic cells triggersproduction of high levels of interleukin-12 and enhances T cell
stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184: 747-52.

Chan, E. D. and Riches, D. W.. 2001. IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. Am. J. Physiol. Cell Physiol. 280: C441-C450.

Coyle, A. J., Lehar, S., Lloyd, C., Tian, J., Delaney, T., Manning, S., Nguyen, T., Burwell, T., Schneider, H. and Gonzalo, J. A.. 2000. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13: 95.

Decker, T., Lohmann-Matthes, M. L. and Gifford, G. E.. 1987. Cell-associated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J. Immunol. 138: 957-962.

Dinarello, C. A.. 1996. Biologic basis for interleukin-1 in disease. Blood 87: 2095-2147.

Dong, C., Juedes, A. E., Temann, U. A., Shresta, S., Allison, J. P., Ruddle, N. H. and Flavell, R. A.. 2001. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409: 97-101.
Dresden, M. H. and Payne, D. C.. 1981. A sieving method for the collection of schistosome eggs from mouse intestines. J. Parasitol. 67: 450-452.

Duvall, R. H. and Dewitt, W. B.. 1967. An improved perfusion technique for recovering adult schistosomes from laboratory animals. Am. J. Trop. Med. Hyg. 16: 483-486.

Gamble, J. R., Smith, W. B. and Vadas, M. A.. 1992. TNF modulation of endothelial and neutrophil adhesion. In “Tumor Necrosis Factors. The Molecules and Their Emerging Role in Medicine” (ed. B. Beutler), pp. 65-86. Raven Press, New York.

Geller D. A. and Billiar T. R.. 1998. Molecular biology of nitric oxide synthases. Cancer Metastasis Rev. 17: 7-23.

Germann, T., Gately, M. K. and Schoenhaut, D. S.. 1993. Interleukin-12/T cell stimulating factor, a cytokine with multiple effects on T helper type 1 (Th1) but not on Th2 cells. Eur. J. Immunol. 23: 1762-1770.

Gonzalo, J. A., Tian, J., Delaney, T., Corcoran, J., Rottman, J. B., Lora, J., Al-garawi, A., Kroczek, R., Gutierrez-Ramos, J. C. and Coyle, A. J.. 2001. ICOS is critical for T helper cell-mediated lung mucosal inflammatory responses. Nat. Immunol. 2: 597.

Green, S. J., Nacy, C. A. and Meltzer, M. S.. 1991. Cytokine-induced synthesis of nitrogen oxides in macrophages: a protective host response to
Leishmania and other intracellular pathogens. J. Leukoc Biol. 50: 93-103.

Guo, J. Y., Huo, H. R., Yang, Y. X., Li, C. H., Liu, H. B., Zhao, B. S., Li, L. F., Ma, Y. Y., Guo, S. Y. and Jiang, T. L.. 2006. 2-Methoxycinnamaldehyde reduces IL-1b-induced prostaglandin production in rat cerebral endothelial cells. Biol. Pharm. Bull. 29: 2214-2221.

Gupta, T. K., Toruner, M., Chung, M. K. and Groszmann, R. J.. 1998. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology 28: 926-931.

Hori, T., Paliard, X., de Waal Malefyt, R., Ranes, M. and Spits, H.. 1991. Comparative analysis of CD8 expressed on mature CD4+CD8+ T cell clones cultured with IL-4 and that on CD8+ T cell clones: implications for functional significance of CD8b. Int. Immunol. 3: 737-742.

Hart, D. N.. 1997. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90: 3245-87.

Hseu, Y. C., Wu, F. Y., Wu, J. J., Chen, J. Y., Chang, W. H., Lu, F. J., Lai, Y. C. and Yang, H. L.. 2005. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int. Immunopharmacol. 5: 1914-1925.

Hseu, Y. C., Yang, H. L., Lai, Y. C., Lin, J. G., Chen, G. W. and Chang, Y. H.. 2004. Induction of apoptosis by Antrodia camphorata in human premyelocytic leukemia HL-60 cells. Nutr. Cancer 48: 189-197.

Hsu, Y. L., Kuo, Y. C., Kuo, P. L., Ng, L. T., Kuo, Y. H. and Lin, C. C.. 2005. Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett 221: 77-89.

Hutloff, A., Dittrich, A. M., Beier, K. C., Eljaschewitsch, B., Kraft, R., Anagnostopoulos, I. and Kroczek, R. A.. 1999. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397: 263-266.

Jinquan, T., Larsen, C. G., Gesser, B., Matsuhima, K. and Thestrup, P. K.. 1993. Human IL-10 is a chemoattractant for CD8+ T lymphocytes and an inhibitor of IL-8-induced CD4+ T lymphocyte migration. J. Immunol. 151: 4545-4551.

Jonuleit, H., Kuhn, U., Muller, G., Steinbrink, K., Paragnik, L. and Schmitt, E.. 1997. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol.27: 3135-42.

Kadowaki, N.. 2007. Dendritic Cells:A Conductor of T Cell Differentiation. Allergology International. 56: 193-199.

Kakumitsu, S., Shijo, H. and Yokoyama, M.. 1998. Effects of l-arginine on the systemic, mesenteric, and hepatic circulation in patients with cirrhosis. Hepatology 27: 377-382.

Kato, T., Yamane, H. and Nariuchi, H.. 1997. Differential effects of LPS and CD40 ligand stimulations on the induction of IL-12 production by dendritic cells and macrophages. Cell Immunol.181: 59-67.

Kim, S. F., Huri, D. A. and Snyder, S. H.. 2005. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310: 1966-1970.

Kim, J. H., Kim, D. H., Baek, S. H., Lee, H. J., Kim, M. R., Kwon, H. J. and Lee, C. H.. 2006. Rengyolone inhibits inducible nitric oxide synthase expression and nitric oxide production by down-regulation of NF-kappaB and p38 MAP kinase activity in LPS-stimulated RAW 264.7 cells. Biochem. Pharmacol. 71: 1198-1205.

Kim, J. B., Han, A. R., Park, E. Y., Kim, J. Y., Cho, W., Lee, J., Seo, E. K. and Lee, K. T.. 2007. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30: 2345-2351.

Kooijman, R., Willems, M. and Rijkers, G. T.. 1992. Effects of insulin-like growth factors and gwoth hormone on the in vitro proliferation of T lymphocytes. J. Neuroimmunol. 38: 95-104.

Krolick, K. A.. 2006. Muscle-derived nitric oxide synthase expression, differences associated with muscle fiber-type, and disease susceptibility in a rat model of myasthenia gravis. Clin. Immunol. 121: 286-293.

Kishimoto, T.. 1989. The biology of interleukin-6. Blood 74:1-10.
Labeur, M. S., Roters, B., Pers, B., Mehling, A., Luger, T. A. and Schwarz, T.. 1999. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J. Immunol. 162: 168-75.

Laroux, F. S., Pavlick, K. P. and Hines, I. N.. 2001. Role of nitric oxide in inflammation. Acta Physiol. Scand. 173: 113-118.

Lee, I. H., Huang, R. L., Chen, C. T., Chen, H. C., Hsu, W. C. and Lu, M. K.. 2002. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS. Microbiol. Lett. 209: 63-67.

Lenschow, D. J., Walunas, T. L. and Bluestone, J. A.. 1996. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14: 233.

Li, L., Sad, S., Kagi, D. and Mosmann, V.. 1997. CD8Tc1 and Tc2 cells secrete distinct cytokine patterns in vitro and in vivo but induce similar inflammatroy reactions. J. Immunol. 158: 4152-4161

Ling, V., Wu, P. W., Finnerty, H. F., Bean, K. M., Spaulding, V., Fouser, L. A., Leonard, J. P., Hunter, S. E., Zollner, R. and Thomas, J. L.. 2000. Cutting edge: identification of GL50, a novel B7-like protein that functionally binds to ICOS receptor. J. Immunol. 164: 1653.

Liu, Y. J.. 2005. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23: 275-306.

Liu, Y. J., Kanzler, H., Soumelis, V. and Gilliet, M.. 2001. Dendritic cell lineage, plasticity and cross-regulation. Nat. Immunol. 2: 585-9.

Liu, X., Bai, X. F., Wen, J., Gao, J. X., Liu, J., Lu, P., Wang, Y., Zheng, P. and Liu, Y.. 2001. B7h costimulates clonal expansion of, and cognate destruction of tumor cells by, CD8+ T lymphocytes in vivo. J. Exp. Med. 194: 1339.

Lorsbach, R. B., Murphy, W. J., Lowenstein, C. J., Snyder, S. H. and Russell, S. W.. 1993. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J. Biol. Chem. 268: 1908-13.

Lyman, S. D., James, L., Vanden Bos, T., de Vries, P., Brasel, K., Gliniak, B., Hollingsworth, L. T., Picha, K. S., McKenna, H. J. and Splett, R. R.. 1993. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75: 1157-1167.

Lyman, S. D. and Jacobsen, S. E.. 1998. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91: 1101-1134.

MacMicking, J., Xie, Q. W. and Nathan, C.. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323-350.

Maldonado-Lopez, R., De Smedt, T., Michel, P., Godfroid, J., Pajak, B. and Heirman, C.. 1999. CD8alpha+ and CD8alpha− subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189: 587-92.

Marletta, M. A., Hurshman, A. R. and Rusche, K. M.. 1998. Catalysis by nitric oxide synthase. Curr. Opin. Chem. Biol. 2: 656-663.

McAdam, A. J., Chang, T. T., Lumelsky, A. E., Greenfield, E. A., Boussiotis, V. A., Duke-Cohan, J., S., Chernova, T., Malenkovich, N., Jabs, C., Kuchroo, V. K.,.Ling V., Collins M., Sharpe A. H. and Freeman G.J.. 2000. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J. Immunol. 165: 5035-5040.

McAdam, A. J., Greenwald, R. J., Levin, M. A., Chernova, T., Malenkovich, N., Ling, V., Freeman, G. J. and Sharpe, A. H.. 2001. ICOS is critical for CD40-mediated antibody class switching. Nature 409: 102.

MacMicking J, Xie, Q. W. and Nathan, C.. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323-350.
Maraskovsky, E., Daro, E., Roux, E., Teepe, M., Maliszewski, C. R. Hoek, J., Caron, D., Lebsack, M. E. and McKenna, H. J.. 2000. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 96: 878-884.

Mellman, I. and Steinman, R.M.. 2001. Dendritic cells: specialized and regulated antigen processing machines. Cell 106: 255-258.

Miller, G., Pillarisetty, V. G., Shah, A. B., Lahrs, S. and DeMatteo, R. P.. 2003. Murine Flt3 ligand expands distinct dendritic cells with both tolerogenic and immunogenic properties. J. Immunol. 170: 3554-3564.

Mittal, M. K., Gupta, T. K., Lee, F. Y., Sieber, C. C. and Groszmann, R. J.. 1994. Nitric oxide modulates hepatic vascular tone in normal rat liver. Am. J. Physiol. 267: 416-422.

Moncada, S.. 1999. Nitric oxide: discovery and impact on clinical medicine. J.R. Soc. Med. 92: 164-169.

Moore, K. W. and de Waal Malefyt, R.. 1993. Interleukin-10. Annu. Rev. Immunol. 108: 430-438.

Mueller, D. L., Jenkins, M. K. and Schwartz, R. H.. 1989. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7: 445.

Noguchi, S., Nakatsuka, M., Konishi, H., Kamada, Y., Chekir, C. and Kudo, T.. 2003. Nafamostat mesilate suppresses NF-κB activation and NO overproduction in LPS-treated macrophages. Int. Immunopharmacol. 3: 1335-1344.

Nussenzweig, M. C., Steinman, R. M., Gutchinov, B. and Cohn, Z. A.. 1980. Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. J. Exp. Med. 152: 1070-1084.

Nussler, A. K. and Billiar, T. R.. 1993. Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol. 54: 171-8.

Okusawa, S., Gelfand, J. A., Ikejima, T. and Dinarello, C. A.. 1998. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J. Clin. Invest. 81: 1162-1172.

Ozkaynak, E., Gao, W., Shemmeri, N., Wang, C., Gutierrez-Ramos, J. C., Amaral, J., Qin, S., Rottman, J. B., Coyle, A. J. and Hancock, W. W.. 2001. Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection. Nat. Immunol. 2: 591.

Paliard, X., de Waal Malefyt, R., de Vries, J. E. and Spits, H.. 1988. Interleukin-4 mediates CD8 induction on human CD4+ T cells clones. Nature 335: 642-644.

Palmer, R. M., Ferrige, A. G. and Moncada, S.. 1987. Nitric oxide release accounts for the biological activity of endotheliumderived relaxing factor. Nature 327: 524-526.

Park, S. W., Sung, M. W., Heo, D. S., Inoue, H., Shim, S. H. and Kim, K. H.. 2005. Nitric oxide upregulates the cyclooxygenase-2 expression through the cAMP-response element in its promoter in several cancer cell lines. Oncogene 24: 6689-6698.

Petermann, H., Vogl, S., Schulze, E. and Dargel, R.. 1999. Chronic liver injury alters basal and stimulated nitric oxide production and 3H-thymidine incorporation in cultured sinusoidal endothelial cells from rats. J. Hepatol. 31: 284-292.

Philip, R. and Epstein, L. B.. 1986. Tumour necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, γ-interferon and interleukin-1. Nature 323: 86-89.

Pulendran, B., Banchereau, J., Burkeholder, S., Kraus, E., Guinet, E., Chalouni, C., Caron, D., Maliszewski, C., Davoust, J., Fay, J.and Palucka K.. 2000. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J. Immunol. 165: 566-572.
Rangel-Frausto, M. S., Pittet, D., Costigan, M., Hwang, T., Davis, C. S. and Wenzel, R. P.. 1995. The natural history of the systemic inflammatory response syndrome (SIRS). J. Am. Med. Assoc. 273: 117-123.

Rottman, J. B., Smith, T., Tonra, J. R., Ganley, K., Bloom, T., Silva, R., Pierce, B., Gutierrez-Ramos, J. C., Ozkaynak, E. and Coyle, A. J.. 2001. The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nat. Immunol. 2: 605.

Seder, R. A., Gazzinelli, R., Sher, A. and Paul, W. E.. 1993. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon γ production and diminishes interleukin 4 inhibition of such priming. Proc. Natl. Acad. Sci. USA 90: 10188-10192.

Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. and Pamer, E. G.. 2003. TNF/iNOS-Producing Dendritic Cells Mediate Innate Immune Defense against Bacterial Infection. Immunity 19: 59-70.

Song, T. Y., Hsu, S. L. and Yen, G. C.. 2005. Induction of apoptosis in human hepatoma cells by mycelia of Antrodia camphorata in submerged
culture. J. Ethnopharmacol. 100: 158-167.

Song, T. Y., Hsu, S. L., Yeh, C. T. and Yen, G. C.. 2005. Mycelia from Antrodia camphorata in submerged culture induce apoptosis of human hepatoma HepG2 cells possibly through regulation of Fas pathway. J. Agric. Food Chem. 53: 5559-64.

Sporici, R. A., Beswick, R. L., von Allmen, C., Rumbley, C. A., Hayden-Ledbetter, M., Ledbetter, J. A. and Perrin, P. J.. 2001. ICOS ligand costimulation is required for T-cell encephalitogenicity. Clin. Immunol. 100: 277.

Shiku, H.. 2003. Importance of CD4+ helper T-cells in antitumor immunity. Int. J. Hematol. 77:435-8.

Shurin, M. R., Esche, C. and Lotze, M. T.. 1998. FLT3: receptor and ligand. Biology and potential clinical application. Cytokine Growth Factor Rev. 9: 37-48.

Sitnicka, E., Bryder, D., Theilgaard-Monch, K., Buza-Vidas, N., Adolfsson, J. and Jacobsen, S. E.. 2002. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17: 463-472.

Swallow, M. M., Wallin, J. J. and Sha, W. C.. 1999. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNF-α. Immunity. 11: 423.

Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K. and Lee, S. S.. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481 , 243-268.

Szekanecz, Z. and Koch, A. E.. 2007. Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol. 19: 289-295.

Tafuri, A., Shahinian, A., Bladt, F., Yoshinaga, S. K., Jordana, M., Wakeham, A. L., Boucher, M., Bouchard, D., Chan, V. S. and Duncan, G.. 2001. ICOS is essential for effective T-helper-cell responses. Nature 409: 105.

Tamatani, T., Tezuka, K. and Hanzawa-Higuchi, N.. 2000. AILIM/ICOS: a novel lymphocyte adhesion molecule. Int. Immunol. 12: 51.

Tezuka, K., Tsuji, T., Hirano, D., Tamatani, T., Sakamaki, K. Kobayashi, Y. and Kamada, M.. 2000. Identification and characterization of rat AILIM/ICOS, a novel T-cell costimulatory molecule, related to the CD28/CTLA4 family. Biochim. Biophys. Acta 276: 335.

Tafuri, A., Shahinian, A., Bladt, F., Yoshinaga, S. K., Jordana, M., Wakeham, A., Boucher, L. M., Bouchard, D., Chan, V. S. and Duncan, G.. 2001. ICOS is essential for effective T-helper-cell responses. Nature 409: 105–109.

Trinchieri, G.. 1997. Cytokines acting on or secreted by macropkages during intracellular infection (IL-10, IL-12, IFN-gamma). Curr. Opin. Immunol. 9:17-23

Turini, M. E. and DuBois, R. N.. 2002. Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med. 53: 35-37.

Urban, J. L., Shepard, H. M., Rothstein, J. L., Sugarman, B. J. and Schreiber, H.. 1986. Tumor necrosis factor: a potent effect or effector molecule for tumor cell killing by activated macrophages. Proc. Natl Acad. Sci. USA 83: 5233-5237.

van Snick, J.. 1990. Interleukin-6: an overview. Annu. Rev. Immunol. 8: 253-278.

Victor, V. M., Rocha, M. and de la Fuente, M.. 2003. Regulation of macrophage function by the antioxidant N-acetylcysteine in mouse-oxidative stress by endotoxin. Int. Immunopharmacol. 3: 97-106.

Waage, A., Brandtzaeg, P., Halstensen, A., Kierulf, P. and Espevik, T.. 1989. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1 and fatal outcome. J. Exp. Med. 169: 333-338.

Walzer, T., Dalod, M., Robbins, S..H., Zitvogel, L. and Vivier, E.. 2005. Natural-killer cells and dendritic cells: "l'union fait la force". Blood 106: 2252-2258.

Wang, M. X., Murrell, D. F., Szabo, C., Warren, R. F. and Sarris, M.. 2001. Nitric oxide in skeletal muscle: inhibition of nitric oxide synthase inhibits walking speed in rats. Nitric Oxide 5: 219-232.

Wallin, J. J., Liang, L., Bakardjiev, A. and Sha, W. C.. 2001. Enhancement of CD8+ T cell responses by ICOS/B7h costimulation. J. Immunol. 167: 132.

Wei, C. L., Khoo, H. E., Lee, K. H. and Hon, W. M.. 2002. Differential expression and localization of nitric oxide synthases in cirrhotic livers of bile duct-ligated rats. Nitric Oxide 7: 91-102.

Yanagida, T., Kato, T., Igarashi, O., Inoue, T. and Nariuchi, H.. 1994. Second signal activity of IL-12 on the proliferation and IL-2R expression of T helper cell-1 clone. J. Immunol. 152: 4919-4928.

Yoshinaga, S. K., Whoriskey, J. S., Khare, S. D., Sarmiento, U., Guo, J., Horan, T., Shih, G., Zhang, M., Coccia, M. A. and Kohno, T.. 1999. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402: 827–832.

Yoshinaga, S. K., Zhang, M., Pistillo, J., Horan, T., Khare, S., D., Miner, K., Sonnenberg, M., Boone, T., Brankow, D. and Dai, T.. 2000. Characterization of a new human B7-related protein: B7RP-1 is the ligand to the co-stimulatory protein ICOS. Int. Immunol. 12: 1439.

Yun, K. J., Kim, J. Y., Kim, J. B., Lee, K. W., Jeong, S. Y., Park, H. J., Jung, H. J., Cho, Y. W., Yun, K. and Lee, K. T.. 2008. Inhibition of LPS-induced NO and PGE(2) production by asiatic acid via NF-kappaB inactivation in RAW 264.7 macrophages: possible involvement of the IKK and MAPK pathways. Int. Immunopharmacol. 8: 431-441.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊