跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭明德
研究生(外文):Ming-Te Cheng
論文名稱:由人類前後十字韌帶分離出幹細胞及其特性之研究
論文名稱(外文):Isolation and identification of ligament derived stem cells from human cruciate ligament
指導教授:李光申李光申引用關係
指導教授(外文):Oscar Kuang-Sheng Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:129
中文關鍵詞:幹細胞前十字韌帶間葉系幹細胞組織工程生長激素
外文關鍵詞:stem cellsanterior cruciate ligamentmesenchymal stem cellstissue engineeringgrowth factors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
前十字韌帶是人類膝關節中最重要也最常受傷害的韌帶。而與其他韌帶很大的不同是,前十字韌帶在受傷或斷裂後並不會自行癒合。而當前十字韌帶斷裂未能癒合時會造成膝關節的不穩定,使病患的活動能力降低,甚至會造成早發性的膝關節炎。據估計每年單單美國因前十字韌帶斷裂就診的病患超過二十萬人次,而且其中有大部分需要手術治療。傳統上治療前十字韌帶斷裂的手術方法仍有許多缺點及併發症,例如像是前膝痛,膝關節無力,有限的自體或異體組織,較大的手術傷疤,以及相當長的恢復期等等。因此對前十字韌帶損傷的治療而言,一種安全可靠簡便而可供移植的韌帶組織是非常重要的。雖然在幹細胞的研究及應用上已有許多進步,但目前在韌帶組織的幹細胞研究上仍然有待努力與突破。而且在文獻上也尚未有相關的報告被提出來。

因此在本研究之第一部分,我們計畫從人類前後十字韌帶中分離出間葉系幹細胞。實驗是從因六位重度退化性膝關節炎行而人工膝關節置換術的患者手術中取得的前後十字韌帶組織加以培養。將其中貼附型的細胞繼代培養並用以進行研究,我們發現這些細胞可以在體外適當培養環境下培養相當長一段時間,而且其中約有百分之二十可以由單一細胞形成多細胞聚落。此外這些由前後十字韌帶組織得來的細胞在體外適當培養液下可以分化為成骨細胞、軟骨細胞、及脂肪細胞。此外它們的表面分子抗原表現與其他來源之幹細胞表現非常相似。而經由長期體外繼代培養後這些細胞仍保持染色體的穩定性,沒有明顯的染色體變異。

在此研究之第二部分,我們進一步研究成人韌帶幹細胞在不同培養環境 (細胞激素) 下之細胞繁殖及分化之差異。嘗試在體外找出最適合韌帶幹細胞的生長、分化與培養條件,得到具有韌帶分化生理特性的細胞。此部分研究使用的生長因子包括乙形纖維母細胞生長因子(fibroblast growth factor 2; FGF-2),表皮生長因子epidermal growth factor (EGF),以及β型轉形生長因子(transforming growth factor-beta 1; TGF-��1)。實驗組之捐贈者是五位因外傷性前十字韌帶斷裂而接受手術之病患,於進行膝關節鏡手術時由患者膝關節中取得的前十字韌帶組織加以培養。經由蛋白脢溶解韌帶組織中的細胞間質後,取得其中的細胞加以培養。再將其中貼附型的細胞繼代培養並用以進行研究,首先確定這些細胞具有幹細胞之特性,如多重分化以及表面分子抗原表現之確認。研究發現乙形纖維母細胞生長因子和β型轉形生長因子可以顯著提升韌帶幹細胞之分裂速率。而且加入β型轉形生長因子可以使得韌帶幹細胞的第一型及第三型膠原蛋白(collagen type I and type III),肌腱蛋白(tenascin-c), 纖維結合蛋白(fibronectin),以及甲型肌動蛋白分子(a-smooth muscle actin)基因表現量顯著增加。除了基因表現表現量的增加外,加入乙形纖維母細胞生長因子和β型轉形生長因子會增加細胞外膠原蛋白以及非膠原蛋白基質(collagenous and non-collagenous extracellular matrix protein)的產生量。此研究發現韌帶幹細胞對不同生長因子之刺激具有高度的敏感性,利用適當的生長因子即可調控韌帶幹細胞的生長及分化,並將之利用於韌帶之修補或重建。

綜合以上所述,本研究顯示我們可以從前後十字韌帶中分離出幹細胞。所需之十字韌帶組織可以從人工膝關節手術或膝關節鏡手術中取得,手術技術上並無太大困難。這些分離出之韌帶幹細胞具有多元分化及自我更新的能力,而且其在體外的生長以及分化可以經由外加生長因子加以調控,這些特性使得我們可以更容易利用這些細胞應用於組織工程,製造出臨床試驗用含活細胞之人工韌帶組織,使用於十字韌帶損傷之治療。
The anterior cruciate ligament (ACL) is the most commonly injured ligaments of the knee. Unlike other major ligaments of the knee, the biological properties of the ACL and its intra-articular environment contribute to poor healing of the ligament after injury. Non-healing of the ligament after injury leads to instability of the joint and refrains the patient from previous sports activities. Long-term instability of knee joint also may lead to early osteoarthritic change. It is estimated more than 20,000 patients suffered from ACL injury and received reconstruction surgery annually in the U.S. However, current reconstruction methods possess several major disadvantages such as donor site pain, weakness of knee, insufficient autograft and allograft tissue, large operative scar, long recovery time, and etc. Therefore, a safe and effective reconstruction method with regeneration medicine is warranted. Mesenchymal stem cells (MSCs) have been isolated from various tissues and provide a fascinating source for regeneration medicine. But till now, tissue engineering with ligament-derived stem cells (LSCs) from ACL have not been reported as yet.

In the first part of this study, we proposed to isolate human stem cells from anterior and posterior cruciate ligaments. Ligaments were obtained from patients receiving total knee arthroplasty for advanced osteoarthritis. Plastic-adherent cells were serially passaged. It was found that a population of ligament-derived cells could be expanded and subcultured extensively. These cells were able to differentiate into osteoblasts, chondrocytes and adipocytes under the appropriate inductions. The phenotypic characteristics of the cells were similar to those of bone marrow MSCs. Karyotyping was normal after serial passage.

In the second part of the study, the goal is to evaluate the proliferation and differentiation abilities of ligament-derived stem cells (LSCs) cultured with growth factors including fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), and transforming growth factor-beta 1 (TGF-��1). The ligament tissues were obtained from patients with anterior cruciate ligament injuries receiving arthroscopic surgeries. LSCs were obtained by collagenase digestion and plating as previously reported. Surface immunophenotype as well as tri-lineage differentiation potentials into osteoblasts, chondrocytes, and adipocytes were confirmed. It was found that proliferation of the cells was enhanced with the addition of FGF-2 and TGF-��1. Upon TGF-��1 treatment, expression of collagen type I and type III, tenascin-c, fibronectin, and a-smooth muscle actin were significantly up-regulated. Additionally, LSCs treated with TGF-��1 and FGF-2 increased the production of collagenous and non-collagenous extracellular matrix protein. Together, these results demonstrate that LSCs respond differently to various cytokines, and the results further validate the potential of using cruciate ligament tissue as a stem cell source for tissue engineering purpose.

In summary, our study demonstrates that multipotent stem cells can be isolated and expanded from human ACL and PCL, which are easily obtained from patients following total knee or cruciate ligament reconstruction surgery. The proliferation and differentiation abilities of LSCs are greatly enhanced with appropriate cytokine treatment. Self-renewal and mesodermal differentiation potential of these cells make them a viable alternative cell source for use in regenerative medicine.
一、封面
二、國立陽明大學學位論文電子檔著作權授權書、國家圖書館碩博士論文電子檔案上網授權書
三、論文口試委員審定書、國立陽明大學博士班研究生論文審定證明書
四、誌謝(Acknowledgement)
五、目錄
六、Chinese Abstract
七、English Abstract
八、List of Abbreviations
九、Introduction
十、Materials and Methods
十一、Result
十二、Discussion
十三、Conclusion
十四、Perspectives
十五、References
十六、Figures and Tables
十七、Publications
1. Butler DL, Dressler M, Awad H. Functional tissue engineering: assessment of function in tendon and ligament repair. In: Gulik F, Butler D, Goldstein S, Mooney D, editors. Functional tissue engineering. New York: Springer; 2003. 213-26.
2. Beynnon BD, Fleming BC. Anterior cruciate ligament strain in-vivo: a review of previous work. J Biomech. 1998; 31(6):519-25.
3. Pennisi E. Tending tender tendons. Science. 2002; 8; 295:1011.
4. Albright JC, Carpenter JE, Graf BK, Richmond JC. Knee and leg: soft tissue trauma. Orthopaedic knowledge, update 6. American Academy of Orthopedic Surgery; 1999.
5. Louie L, Yannas I, Spector M. Tissue engineered tendon. In: Patrick Jr. C, Mikos A, McIntire L, editors. Frontiers in tissue engineering. New York: Elsevier Science Ltd.; 1998. 413-42.
6. Khatod M, Akeson W, Amiel D. Ligament injury and repair. In: Pedowitz R, O’Connor J, Akeson W, editors. Daniel’s knee injuries. 2nd ed. Philadelphia: Lipponcott Williams and Wilkins; 2003. 185-201.
7. Woo SL, Abramowitch SD, Kilger R, Liang R. Biomechanics of knee ligaments: injury, healing, and repair. J Biomach. 2006; 39: 1-20.
8. Feagin JA Jr, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med. 1976; 4: 95-100.
9. Noyes FR, Mooar LA, Moorman CT III, McGinniss GH. Partial tears of the anterior cruciate ligament. Progression to complete ligament deficiency. J Bone Joint Surg [Br]. 1989; 71(5): 825-33.
10. Fruensgaard S, Johannsen HV. Incomplete ruptures of the anterior cruciate ligament. J Bone Joint Surg [Br]. 1989; 71(3):526-30.
11. Kleiner JB, Roux RD, Amiel D, Woo SL-Y. Primary healing of the anterior cruciate ligament. Trans Orthop Res Soc.1986; 11:131.
12. Barrack RL, Bruckner JD, Kneisl J, Inman WS, Alexander AH. The outcome of non-operatively treated complete tears of the anterior cruciate ligament in active young adults. Clin Orthop Rel Res.1990; 259: 192-9.
13. Caborn DN, Johnson BM. The natural history of the anterior cruciate ligament-deficient knee. A review. Clin Sports Med.1993; 12: 625-36.
14. Louboutin H, Debarge R, Richou J, Selmi TA, Donell ST, Neyret P, Dubrana F. Osteoarthritis in patients with anterior cruciate ligament rupture: A review of risk factors. Knee. 2009; 16(4): 239-44.
15. Feagin JA, Abbott HG, Rokous JA. The isolated tear of anterior cruciate ligament. J Bone Joint Surg Am. 1972; 4:95-100.
16. Garrett WE Jr, Swiontkowski MF, Weinstein JN, Callaghan J, Rosier RN, Berry DJ, Harrast J, Derosa GP. American Board of Orthopaedic Surgery Practice of the Orthopaedic Surgeon: Part-II, certification examination case mix. J Bone Joint Surg Am. 2006; 88(3): 660-7.
17. Seng K, Appleby D, Lubowitz JH. Operative versus nonoperative treatment of anterior cruciate ligament rupture in patients aged 40 years or older: an expected-value decision analysis. Arthroscopy. 2008; 24(8): 914-20.
18. Lysholm J, Gillquist J: Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med. 1982; 10: 150-4.
19. Muaidi QI, Nicholson LL, Refshauge KM, Herbert RD, Maher CG. Prognosis of conservatively managed anterior cruciate ligament injury: a systematic review. Sports Med. 2007; 37(8): 703-16.
20. Feagin JA, Curl WW. Isolated tear of the anterior cruciate ligament, five-year follow-up study. Am J Sports Med. 1976; 4: 95-100.
21. Taylor DC, Posner M, Curl WW, Feagin JA. Isolated tears of the anterior cruciate ligament: over 30-year follow-up of patients treated with arthrotomy and primary repair. Am J Sports Med. 2009; 37(1): 65-71.
22. Meunier A, Odensten M, Good L. Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: a randomized study with a 15-year follow-up. Scand J Med Sci Sports. 2007;17(3):230-7.
23. Hey-Groves EW (1917) Operation for the repair of cruciate ligaments. Lancet. 1917; 2:674-75.
24. Bartlett RJ, Clatworthy MG, Nguyen TN. Graft selection in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br. 2001; 83(5):625-34.
25. Haut Donahue TL, Howell SM, Hull ML, Gregersen C. A biomechanical evaluation of anterior and posterior tibialis tendons as suitable single-loop anterior cruciate ligament grafts. Arthroscopy. 2002; 18(6): 589-97.
26. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am. 1984; 66(3): 344-52.
27. Chang SK, Egami DK, Shaieb MD, Kan DM, Richardson AB. Anterior cruciate ligament reconstruction: allograft versus autograft. Arthroscopy. 2003; 19(5): 453-62.
28. Harner CD, Olson E, Irrgang JJ, Silverstein S, Fu FH, Silbey M. Allograft versus autograft anterior cruciate ligament reconstruction: 3- to 5-year outcome. Clin Orthop Relat Res. 1996; (324): 134-44.
29. Järvelä T, Nyyssönen M, Kannus P, Paakkala T, Järvinen M. Bone-patellar tendon-bone reconstruction of the anterior cruciate ligament. A long-term comparison of early and late repair. Int Orthop. 1999; 23(4) :227-31.
30. Kartus J, Movin T, Karlsson J. Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy. 2001; 17(9): 971-80.
31. Peterson RK, Shelton WR, Bomboy AL. Allograft versus autograft patellar tendon anterior cruciate ligament reconstruction: A 5-year follow-up. Arthroscopy. 2001; 17(1): 9-13.
32. Aglietti P, Buzzi R, D'Andria S, Zaccherotti G. Patellofemoral problems after intraarticular anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 1993; (288): 195-204
33. Bonamo JJ, Krinick RM, Sporn AA. Rupture of the patellar ligament after use of its central third for anterior cruciate reconstruction. A report of two cases. J Bone Joint Surg Am. 1984; 66(8): 1294-7.
34. Marumoto JM, Mitsunaga MM, Richardson AB, Medoff RJ, Mayfield GW. Late patellar tendon ruptures after removal of the central third for anterior cruciate ligament reconstruction. A report of two cases. Am J Sports Med. 1996; 24(5): 698-701.
35. McCarroll JR. Fracture of the patella during a golf swing following reconstruction of the anterior cruciate ligament. A case report. Am J Sports Med. 1983; 11(1): 26-7.
36. Sachs RA, Daniel DM, Stone ML, Garfein RF. Patellofemoral problems after anterior cruciate ligament reconstruction. Am J Sports Med. 1989 ; 17(6): 760-5.
37. Devita P, Hortobagyi T, Barrier J, Torry M, Glover KL, Speroni DL, Money J, Mahar MT. Gait adaptations before and after anterior cruciate ligament reconstruction surgery. Med Sci Sports Exerc. 1997; 29(7): 853-9.
38. Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ. Knee strength deficits after hamstring tendon and patellar tendon anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2000; 32(8): 1472-9.
39. Marder RA, Raskind JR, Carroll M. Prospective evaluation of arthroscopically assisted anterior cruciate ligament reconstruction. Patellar tendon versus semitendinosus and gracilis tendons. Am J Sports Med. 1991; 19(5): 478-84.
40. Carter TR, Edinger S. Isokinetic evaluation of anterior cruciate ligament reconstruction: hamstring versus patellar tendon. Arthroscopy. 1999; 15(2): 169-72.
41. Caborn DN, Selby JB. Allograft anterior tibialis tendon with bioabsorbable interference screw fixation in anterior cruciate ligament reconstruction. Arthroscopy. 2002; 18(1): 102-5.
42. Prokopis PM, Schepsis AA. Allograft use in ACL reconstruction. Knee. 1999; 6:75-85.
43. Fahey M, Indelicato PA. Bone tunnel enlargement after anterior cruciate ligament replacement. Am J Sports Med. 1994; 22(3): 410-4.
44. Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF, Simon TM. A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med. 1993; 21(2): 176-85.
45. Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials. 2000; 21(23): 2461-74.
46. Richmond JC, Manseau CJ, Patz R, McConville O. Anterior cruciate reconstruction using a Dacron ligament prosthesis. A long-term study. Am J Sports Med. 1992; 20(1): 24-8.
47. Bolton CW, Bruchman WC. The GORE-TEX expanded polytetrafluoroethylene prosthetic ligament. An in vitro and in vivo evaluation. Clin Orthop Relat Res. 1985; (196): 202-13.
48. Mody BS, Howard L, Harding ML, Parmar HV, Learmonth DJ. The ABC carbon and polyester prosthetic ligament for ACL-deficient knees. Early results in 31 cases. J Bone Joint Surg Br. 1993; 75(5): 818-21.
49. Koski JA, Ibarra C, Rodeo SA. Tissue-engineered ligament: cells, matrix, and growth factors. Orthop Clin North Am. 2000; 31(3): 437-52.
50. Savarese A, Lunghi E, Budassi P, Agosti A. Remarks on the complications following ACL reconstruction using synthetic ligaments. Ital J Orthop Traumatol. 1993; 19(1): 79-86.
51. Arnauw G, Verdonk R, Harth A, Moerman J, Vorlat P, Bataillie F, Claessens H. Prosthetic versus tendon allograft replacement of ACL-deficient knees. Acta Orthop Belg. 1991; 57 Suppl 2: 67-74.
52. Mastrokalos DS, Springer J, Siebold R, Paessler HH. Donor site morbidity and return to the preinjury activity level after anterior cruciate ligament reconstruction using ipsilateral and contralateral patellar tendon autograft: a retrospective, nonrandomized study. Am J Sports Med. 2005; 33(1): 85-93.
53. Mickelsen PL, Morgan SJ, Johnson WA, Ferrari JD. Patellar tendon rupture 3 years after anterior cruciate ligament reconstruction with a central one third bone-patellar tendon-bone graft. Arthroscopy. 2001; 17(6): 648-52.
54. Papageorgiou CD, Kostopoulos VK, Moebius UG, Petropoulou KA, Georgoulis AD, Soucacos PN. Patellar fractures associated with medial-third bone-patellar tendon-bone autograft ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2001; 9(3): 151-4.
55. Stein DA, Hunt SA, Rosen JE, Sherman OH.The incidence and outcome of patella fractures after anterior cruciate ligament reconstruction. Arthroscopy. 2002; 18(6): 578-83
56. Arriaza R, Señaris J, Couceiro G, Aizpurua J. Stress fractures of the femur after ACL reconstruction with transfemoral fixation. Knee Surg Sports Traumatol Arthrosc. 2006; 14(11): 1148-50.
57. Mayr HO, Weig TG, Plitz W. Arthrofibrosis following ACL reconstruction--reasons and outcomeArch Orthop Trauma Surg. 2004; 124(8): 518-22.
58. Hall MP, Hergan DM, Sherman OH. Early fracture of a bioabsorbable tibial interference screw after ACL reconstruction with subsequent chondral injury. Orthopedics. 2009; 32(3): 208.
59. Baums MH, Zelle BA, Schultz W, Ernstberger T, Klinger HM. Intraarticular migration of a broken biodegradable interference screw after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006; 14(9): 865-8.
60. Portland GH, Martin D, Keene G, Menz T. Injury to the infrapatellar branch of the saphenous nerve in anterior cruciate ligament reconstruction: comparison of horizontal versus vertical harvest site incisions. Arthroscopy. 2005; 21(3): 281-5.
61. Kjaergaard J, Faunø LZ, Faunø P. Sensibility loss after ACL reconstruction with hamstring graft. Int J Sports Med. 2008; 29(6): 507-11.
62. Matava MJ, Evans TA, Wright RW, Shively RA. Septic arthritis of the knee following anterior cruciate ligament reconstruction: results of a survey of sports medicine fellowship directors. Arthroscopy. 1998; 14(7): 717-25.
63. Vardi G. Sciatic nerve injury following hamstring harvest. Knee. 2004; 11(1): 37-9.
64. Phelan DT, Cohen AB, Fithian DC. Complications of anterior cruciate ligament reconstruction. Instr Course Lect. 2006; 55: 465-74.
65. Myer GD, Ford KR, Hewett TE. Rationale and Clinical Techniques for Anterior Cruciate Ligament Injury Prevention among Female Athletes. J Athl Train. 2004; 39(4): 352-64.
66. von Porat A, Roos EM, Roos H. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis. 2004; 63(3): 269-73.
67. Kobayashi D, Kurosaka M, Yoshiya S, Mizuno K. Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 1997; 5(3): 189-94.
68. Wiig ME, Amiel D, VandeBerg J, Kitabayashi L, Harwood FL, Arfors KE. The early effect of high molecular weight hyaluronan (hyaluronic acid) on anterior cruciate ligament healing: an experimental study in rabbits. J Orthop Res. 1990; 8(3): 425-34.
69. Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg. 1988; 23(1 Pt 2): 3-9.
70. Langer R, Vacanti JP. Artificial organs. Sci Am. 1995; 273(3):130-3.
71. Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng. 1991; 113(2): 143-51.
72. Cortesini R. Progress in tissue engineering and organogenesis in transplantation medicine. Exp Clin Transplant. 2003; 1(2): 102-11.
73. Elçin YM. Stem cells and tissue engineering. Adv Exp Med Biol. 2004; 553: 301-16.
74. Rabkin-Aikawa E, Mayer JE Jr, Schoen FJ. Heart valve regeneration. Adv Biochem Eng Biotechnol. 2005; 94: 141-79.
75. Kim CW, Pedowitz RA. Part A: graft choices and the biology of graft healing. In: Pedowitz RA, O’Conner J, Akeson W, editors. Daniel’s knee injuries. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 435-91.
76. Henshaw DR, Attia E, Bhargava M, Hannafin JA. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels J Orthop Res. 2006; 24(3): 481-90.
77. Fan H, Liu H, Wong EJ, Toh SL, Goh JC. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 2008; 29(23): 3324-37.
78. Liu H, Fan H, Toh SL, Goh JC. A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials. 2008; 29(10): 1443-53.
79. Heckmann L, Schlenker HJ, Fiedler J, Brenner R, Dauner M, Bergenthal G, Mattes T, Claes L, Ignatius A. Human mesenchymal progenitor cell responses to a novel textured poly (L-lactide) scaffold for ligament tissue engineering. J Biomed Mater Res B Appl Biomater. 2007; 81(1): 82-90.
80. Heckmann L, Fiedler J, Mattes T, Dauner M, Brenner RE. Interactive effects of growth factors and three-dimensional scaffolds on multipotent mesenchymal stromal cells. Biotechnol Appl Biochem. 2008; 49(Pt 3): 185-94.
81. van Eijk F, Saris DB, Creemers LB, Riesle J, Willems WJ, van Blitterswijk CA, Verbout AJ, Dhert WJ. The effect of timing of mechanical stimulation on proliferation and differentiation of goat bone marrow stem cells cultured on braided PLGA scaffolds. Tissue Eng Part A. 2008; 14(8): 1425-33.
82. Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH. In vivo evaluation of a tri-phasic composite scaffold for anterior cruciate ligament-to-bone integration. Conf Proc IEEE Eng Med Biol Soc. 2006; 1: 525-8.
83. Dunn MG, Liesch JB, Tiku ML, Zawadsky JP. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res. 1995; 29(11): 1363-71.
84. Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG. Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res. 1998; 16(4): 414-20.
85. Lin VS, Lee MC, O'Neal S, McKean J, Sung KL. Ligament tissue engineering using synthetic biodegrade fiber scaffolds. Tissue Eng. 1999; 5(5): 443-52
86. Van Eijk F, Saris DB, Riesle J, Willems WJ, Van Blitterswijk CA, Verbout AJ, Dhert WJ. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng. 2004; 10(5-6): 893-903.
87. Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL. Tissue engineering of ligaments. Annu Rev Biomed Eng. 2004; 6: 131-56.
88. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL. Cell differentiation by mechanical stress. FASEB J. 2002; 16(2): 270-2.
89. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002; 13: 4279-4295.
90. Fukumoto, T., Sperling, J.W., Sanyal, A., Fitzsimmons, J.S., Reinholz, G.G., Conover, C.A., and O’Driscoll, S.W. Combined effects of insulin-like growth factor-1 and transforming growth factor-1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage. 2003; 11: 55-64.
91. Cao, B., Zheng, B., Jankowski, R.J., Kimura, S., Ikezawa, M., Deasy, B., Cummins, J., Epperly, M., Qu-Peterson, Z., and Huard, J. Muscle stem cells differentiate into hemopoietic lineages but retrain myogenic potential. Nat Cell Biol. 2003; 5: 640-6.
92. De Bari, C., Dell’Accio, F., Tylzanowski, P., and Luyten, F.P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001; 44: 1928-42.
93. Lee, O.K., Kuo, T.K., Chen, W.M., Lee, K.D., Hsieh, S.L., and Chen, T.H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004; 103: 1669-75.
94. Bi, Y., Ehirchiou, D., Kilts, T.M., Inkson, C.A., Embree, M.C., Sonoyama, W., Li, L., Leet, A.I., Seo, B.M., Zhang, L., Shi, S., and Young, M.F. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007; 13: 1219-27.
95. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheu. 2005; 52: 2521-9.
96. Goh JC, Ouyang HW, Teoh SH, Chan CK, Lee EH. Tissue-engineering approach to the repair and regeneration of tendons and ligaments. Tissue Eng. 2003; 9 Suppl 1: S31-44.
97. Moreau JE, Chen J, Bramono DS, Volloch V, Chernoff H, Vunjak-Novakovic G, Richmond JC, Kaplan DL, Altman GH. Growth factor induced fibroblast differentiation from human bone marrow stromal cells in vitro. J Orthop Res. 2005; 23(1): 164-74.
98. Yoon JH, Halper J. Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact. 2005; 5(1): 22-34.
99. Sheps DM, Hildebrand KA, Boorman RS. Simple dislocations of the elbow: evaluation and treatment. Hand Clin. 2004; 20(4): 389-404.
100. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 20041; 364(9429): 149-55.
101. Murakami S, Takayama S, Ikezawa K, Shimabukuro Y, Kitamura M, Nozaki T, Terashima A, Asano T, Okada H. Regeneration of periodontal tissues by basic fibroblast growth factor. J Periodontal Res. 1999 Oct;34(7):425-30
102. Nagineni CN, Amiel D, Green MH, Berchuck M, Akeson WH. Characterization of the intrinsic properties of the anterior cruciate and posterior cruciate ligament cells: an in vitro cell culture study. J Orthop Res. 1992; 10(4): 465-75.
103. Sekiya I, Larson BL, Smith JR, Pochanmpally R, Cui JG, Prockop DJ. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells. 2002; 20(6): 530-41.
104. Dong Z, Cmarik JL, Wendel EJ, Colburn NH. Differential transformation efficiency but not AP-1 induction under anchorage-dependent and –independent conditions. Carcinogenesis. 1994; 15(5): 1001-4.
105. de Mos M, Koevoet WJ, Jahr H, Verstegen MM, Heijboer MP, Kops N, van Leeuwen JP, Weinans H, Verhaar JA, van Osch GJ. Intrinsic differentiation potential of adolescent human tendon tissue: an in vitro cell differentiation study. BMC Musculoskelet disord. 2007; 8: 16.
106. Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F (2006) Expansion of mesenchymal stem cells isolated from pediatric and adult bone marrow. J Cell Biochem. 2006; 97(4): 744-54.
107. López-De León, A., and Rojkind, M. A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J Histochem Cytochem. 1985; 33, 737-43.
108. Helman, Y., Natale, F., Sherrell, R.M., Lavigne, M., Starovoytov, V., Gorbunov, M.Y., and Falkowski, P.G. Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. Proc Natl Acad Sci U S A. 2008; 105: 54-8.
109. Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem cells. 2006; 24(11): 2391-7.
110. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infracted myocardium. Nature. 2001; 410(6829): 701-5
111. Quarto R, Mastrogiacomo. M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M. Repair of large bone defects with the use of autogenous bone marrow stromal cells. N Engl J Med. 2001; 344(5): 385-6.
112. Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med. 2001; 344(20): 1511-4.
113. Min JY, Sullivan MF, Yang Y, Zhang JP, Converso KL, Morgan JP, Xiao YF. Significant improvement of heart function by cotransplantation of human mesenchymal cells and fetal cardiomyocytes in postinfarcted pigs. Ann Thorac Surg. 2003; 74(5): 1568-75.
114. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002; 105(1): 93-8.
115. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autogenous culture expanded bone marrow mesenchymal stem cell transplantation for repair of cartilage defects in osteoarthritic knee. Osteoarthritis Cartilage. 2002; 10(3): 199-206.
116. Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, Russo PA, Bolte H, Sherry E, Behrens E, Terheyden H. Growth and transplantation of a custom vascularized bone graft in a man. Lancet. 2004; 364(9436): 766-770.
117. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004; 95(1): 9-20.
118. Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage and lung in irridiated mice. PANS. 1995; 92(11):4857-61.
119. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK. Transplantability and therapeutic effects of bone marrow-derived mesenchymal stem cells in children with osteogenesis imperfecta. Nat Med. 1999; 5(3): 262-4.
120. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshark DR. Multilineage potential of adult human mesenchymal cells. Science. 1999; 284(5411): 143-7.
121. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002; 418(6893): 41-49.
122. Smith JR, Pochampally R, Perry A, Hsu SC, Prockop DJ. Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem cells. 2004; 22(5): 823-31.
123. Ge Z, Goh JC, Lee EH. Selection of cell source for ligament tissue engineering. Cell Transplant. 2005; 14(8): 573-83.
124. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-7.
125. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem cells. 2007; 25(11): 2896-902.
126. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007; 13(10):1219-27.
127. Kaplan N, Wickiewicz TL, Warren RF. Primary surgical treatment of anterior cruciate ligament ruptures. A long-term follow-up study. Am J Sports Med. 1990; 18(4): 354-8.
128. Träger D, Pohle K, Tschirner W. Anterior cruciate ligament suture in comparison with plasty: A 5-year follow-up study. Arch Orthop Trauma Surg. 1985; 114(5): 278-80.
129. Strand T, Molster A, Hordvik M, Krukhaug Y. Long-term follow-up after primary repair of the anterior cruciate ligament: clinical and radiological evaluation 15-23 years post-operatively. Arch Orthop Trauma Surg. 2005; 125(4): 217-21.
130. Mononen T, Alaranta H, Harilainen A, Sandelin J, Vanhanen I, Osterman K. Instrumented measurement of anterior-posterior translation of in knees with chronic anterior cruciate ligament tear. Arch Orthop Trauma Surg. 1997; 116(5): 283-6.
131. Beynnon BD, Fleming BC, Labovitch R, Parsons B. Chronic anterior cruciate ligament deficiency is associated with increased anterior translation of the tibia during the transition from non-weightbearing to weightbearing. J Orthop Res. 2003; 20(2): 332-7.
132. Brandsson S, Karlsson J, Swärd L, Kartus J, Eriksson BI, Kärrholm J. Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre- and postoperative radiostereometric studies. Am J Sports Med. 2002; 30(3): 361-7.
133. Shefelbine SJ, Ma CB, Lee KY, Schrumpf MA, Patel P, Safran MR, Slavinsky JP, Majumdar S. MRI analysis of in vivo meniscal and tibiofemoral kinematics in ACL-deficient and normal knees. J Orthop Res. 2006; 24(6):1208-17.
134. Amiel, D., Billings, E. Jr., and Harwood, F.L. Collagenase activity in anterior cruciate ligament: protective role of the synovial sheath. J Appl Physiol. 1990; 69: 902-6.
135. Cameron, M.L., Fu, F.H., Paessler, H.H., Schneider, M., and Evans, C.H. Synovial fluid cytokine concentrations as possible prognostic indicators in the ACL-deficient knee. Knee Surg Sports Traumatol Arthrosc. 1994; 2, 38-44.
136. Bray RC, Leonard CA, Salo PT. Vascular physiology and long-term healing of partial ligament tears. J Orthop Res. 2002; 20(5): 984-9.
137. Bray RC, Leonard CA, Salo PT. Correlation of healing capacity with vascular response in the anterior cruciate and medial collateral ligaments of the rabbit. J Orthop Res. 2003; 21(6): 1118-23.
138. Lee SY, Miwa M, Sakai Y, Kuroda R, Matsumoto T, Iwakura T, Fujioka H, Doita M, Kurosaka M. In vitro multipotentiality and characterization of human unfractured traumatic hemarthrosis-derived progenitor cells: A potential cell source for tissue repair. J Cell Physiol. 2007; 210(3): 561-6.
139. Hankemeier, S., Keus, M., Zeichen, J., Jagodzinski, M., Barkhausen, T., Bosch, U., Krettek, C., and Van Griensven, M. Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng. 2005; 11: 41-9.
140. Silverio-Ruiz, K.G., Martinez, A.E., Garlet, G.P., Barbosa, C.F., Silva, J.S., Cicarelli, R.M., Valentini, S.R., Abi-Rached, R.S., and Junior, C.R. Opposite effects of bFGF and TGF-beta on collagen metabolism by human periodontal ligament fibroblasts. Cytokine. 2007; 39: 130-7.
141. Zhou, D., Lee, H.S., Villarreal, F., Teng, A., Lu, E., Reynolds, S., Qin, C., Smith, J., and Sung, K.L. Differential MMP-2 activity of ligament cells under mechanical stretch injury: an in vitro study on human ACL and MCL fibroblasts. J Orthop Res. 2005; 23: 949-57.
142. Narine, K., De Wever, O., Van Valckenborgh, D., Francois, K., Bracke, M., DeSmet, S., Mareel, M., and Van Nooten, G. Growth factor modulation of fibroblast proliferation, differentiation, and invasion: implications for tissue valve engineering. Tissue Eng. 2006; 12: 2707-16.
143. Tamama, K., Fan, V.H., Griffith, L.G., Blair, H.C., and Wells, A. Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells. 2006; 24: 686-95.
144. Grotendorst, G.R., Rahmanie, H., and Duncan, M.R. Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. FASEB J. 2004; 18: 469-79.
145. Amiel, D., Frank, C., Harwood, F., Fronek, J., and Akeson, W. Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res. 1984; 1: 257-65.
146. Yoon, J.H., and Halper, J. Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact. 2005; 5, 22-34.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊