跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 09:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姜智耀
研究生(外文):Chih-Yao Chiang
論文名稱:鈦金屬材料表面形成氧化層奈米網狀構造可增加人類細胞增長
論文名稱(外文):Formation of TiO2 Nano-Network on Titanium Surface increases the Human Cell Growth
指導教授:邱士華邱士華引用關係施俊哲施俊哲引用關係
指導教授(外文):Shih-Hwa ChiouChun-Che Shih
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:30
中文關鍵詞:奈米網狀構造鈦金屬電化學陽極化蝕刻法人類骨髓間質幹細胞綠色螢光蛋白
外文關鍵詞:Nano-networkTitaniumElectrochemical anodizationHuman mesenchymal stem cellGreen fluorescent protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
目標:本研究主要是利用電化學陽極化蝕刻法(electrochemical anodization treatment)使鈦金屬材料表面上形成一個氧化層奈米網狀構造(nano-network surface oxide layer)。使用這個方式來促進細胞在鈦金屬表面材料上的生長能力並期待可以應用在人工植牙的臨床使用上。
方法:使用x-射線光電質譜儀(x-ray photoelectron spectroscopy)
與掃瞄式電子顯微鏡(field emission scanning electron microscopy)測量經電化學陽極化蝕刻法的鈦金屬材料表面上其產生氧化層奈米網狀構造的特性。除此之外,使用表現綠色螢光蛋白(green fluorescent protein, GFP)的人類骨髓間質幹細胞(Human bone marrow mesenchymal stem cells, hMSCs)觀察細胞在鈦金屬表面上的生長情形。在體外實驗方面,利用螢光顯微鏡與血球計數器估計細胞生長的速度;而在體內實驗方面,則是將種有人類骨髓間質幹細胞的鈦金屬材料移植到免疫缺乏小鼠的背部皮膚內,使用分析軟體估算螢光強度作為細胞在小鼠體內生長速度的依據。在幹細胞分化實驗中,則是利用茜草紅色素染色(Alizarin red staining)與螢光免疫染色法(immunofluorescent staining)觀察幹細胞在鈦金屬材料表面上的分化情形。
結果:使用電化學陽極化蝕刻法能在鈦金屬材料表面上迅速地產生多層的二氧化鈦(TiO2)奈米網狀結構,在體外與體內中皆發現與未經電化學陽極化蝕刻法處理的鈦金屬材料比較,經電化學陽極化蝕刻法處理的鈦金屬能促進人類骨髓間質幹細胞的生長。此外,經電化學陽極化蝕刻法處理的鈦金屬在經過體內28天的培養後亦能誘導人類骨髓間質幹細胞的分化。
Objectives.
This study was to improve human cell growth on titanium (Ti) used for dental implants through formation of a nano-network surface oxide layer created by an electro-chemical anodization treatment.

Methods.
An electrochemical anodization treatment was used to produce a network oxide layer on Ti surface. Surface characterization of the network layer was carried out using thin film X-ray diffractometer and field emission scanning electron microscopy. Human bone marrow mesenchymal stem cells (hMSCs) were made to express green fluorescent protein (GFP) by retroviral transduction. The GFP signal was measured in situ to assess in vitro and in vivo cell growth on Ti surfaces.
In vivo experiments on Ti-supported cell growth were carried out on the back skin of nude mice. Alizarin red staining and immunofluorescent staining were used to observe cell differentiation.

Results.
A multilayer TiO2 nano-network was produced rapidly on Ti surface using a simple electrochemical anodization treatment. The TiO2 nano-network layer on the anodized Ti surfaces significantly improved in vitro and in vivo hMSC growth, as assessed by measurement of GFP fluorescence, relative to hMSC growth on untreated Ti surface. The TiO2 nano-network layer on the anodized Ti surfaces can also induce the differentiation of hMSCs after 28-day in vivo test.

Significance.
The formation of TiO2 nano-network on the Ti surfaces can increase the hMSC growth in vitro and in vivo.
中文摘要 …………………………………………………………. 6
英文摘要 …………………………………………………………. 7
關鍵字 …………………………………………………………. 9
引言 …………………………………………………………. 10
材料與方法 ………………………………………………………. 12
研究結果 …………………………………………………………. 15
研究討論 …………………………………………………………. 18
研究結論 …………………………………………………………. 21
參考文獻 …………………………………………………………. 22
圖與表 …………………………………………………………. 25
References
[1] AbrahamssonI, Zitzmann NU, BerglundhT, WennerbergA, LindheJ. Bone and soft tissue integration to titanium implants with different surface topography: anexperimental study in the dog. Int J Oral Maxillofac Implants 2001;16:323–32.
[2] Olmedo D, Fernandez MM, Guglielmotti MB, Cabrini RL. Macrophages related to dental implant failure. Implant Dent 2003; 12:75–80.
[3] Rosa AL, Beloti MM. Rat bone marrow cell response to titanium and titanium alloy with different surface roughness. Clin Oral Implants Res2003; 14:43–8.
[4] Chiapasco M, Gatti C. Implant-retained mandibular overdentures with immediate loading: a 3- to 8-year prospective study on 328 implants. Clin Implant Dent Relat Res 2003; 5:29–38.
[5] Huang HH. Electrochemical impedance spectroscopy study of strained titanium in uoride media. Electrochim Acta 2002;47:2311–8.
[6] Huang HH. Effects of uoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials 2002;23:59–63.
[7] Tschernitschek H, Borchers L, Geurtsen W. Nonalloyed titanium as a bioinert metal—a review. Quintessence Int2005; 36:523–30.
[8] Groessner-Schreiber B, HannigM, DckA, Griepentrog M, Wenderoth DF. Do different implant surfaces exposed in the oral cavity of humans show different biolm compositions and activities? Eur J Oral Sci 2004; 112:516–22.
[9] Jungner M, Lundqvist P, Lundgren S. Oxidized titanium implants (Nobel Biocare® TiUniteTM) compared with turned titanium implants (Nobel Biocare® markIIITM) with respect to implant failure in a group of consecutive patients treated with early functional loading and two-stage protocol. Clin Oral Implants Res 2005; 16:308–12.
[10] Ganeles J, Zollner A, Jackowski J, Ten Bruggenkate C, Beagle J, Guerra F. Immediate and early loading of Straumann implants with a chemically modied surface (SLActive) in the posterior mandible and maxilla: 1-year results from a prospective multicenter study. Clin Oral Implants Res 2008; 19:1119–28.
[11] Yamamichi N, Itose T, Neiva R, Wang HL. Long-term evaluation of implant survival in augmented sinuses: A case series. Int J Periodontics Restorative Dent 2008; 28:163–9.
[12] Bugea C, Luongo R, DiIorio D, Cocchetto R, Celletti R. Bone contact around osseointegrated implants: Histologic analysis of adual-acid-etched surface implant in a diabetic patient. Int J Periodontics Restorative Dent 2008; 28:145–51.
[13] Assad M, Chernyshov A, Leroux MA, Rivard CH. A new porous titanium-nickel alloy, Part1: Cytotoxicity and genotoxicity evaluation. Bio-Med Mater Eng 2002; 12:225–37.
[14] Yang Y, Tian J, Deng L, Ong J L. Morphological behavior of osteoblast-like cells on surface-modied titanium in vitro. Biomaterials 2002;23:1383–9.
[15] Kim HM, Kokubo T, Fujibayashi S, Nishiguchi S, Nakamura T. Bioactive macroporous titanium surface layer on titanium substrate. J Biomed Mater Res 2000; 52:553–7.
[16] Nishiguchi S, Fujibayashi S, Kim HM, Kokubo T, Nakamura T. Biology of alkali-and heat-treated titanium implants. J Biomed Mater Res 2003;67A:26–35.
[17] Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T. Osteoinduction of porous bioactive titanium metal. Biomaterials 2004;25:443–50.
[18] Zhu X, Ong J L, Kim S, Kim K. Surface characteristics and structure of anodic oxide lms containing Ca and P on a titanium implant material. J Biomed Mater Res 2002;60:333–8.
[19] Rosenberg R, Starosvetsky D, GotmanI. Surface modication of a low modulus Ti–Nb alloy for use in medical implants. J Mater Sci Lett 2003; 1:29–32.
[20] Huang HH, Pan S J, Lu F H. Surface electrochemical impedance in situ monitoring of cell-cultured titanium with a nano-network surface layer. Scripta Mater 2005; 53:1037–42.
[21] Bauer S, Kleber S, Schmuki P. TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes. Electrochem Commun 2006; 8:1321–5.
[22] Ghicov A, Macak J M, Tsuchiya H, Kunze J, Haeublein V, Frey L, et al. Ion implantation and annealing for an efcient N-doping of TiO2 nanotubes. Nano Lett 2006; 6:1080–2.
[23] Valiev R Z, SemenovaI P, Latysh V V, Rack H, Lowe T C, Petruzelka J, et al. Nanostructured titanium for biomedical applications. Adv Eng Mater 2008; 10:B15–7.
[24] Perng C K, Kao C L, Yang Y P, Lin H T, Lin W B, Ma H, et al. Culturing adult human bone marrow stem cells on gelatin scaffold with pnipaam as transplanted grafts for skin regeneration. J Biomed Mater Res A 2008; 84:622–30.
[25] Lin H L, Yang M H, Wu C W, Chen P M, Yang Y P, Kao C L, et al. 2-Methoxyestradiol attenuates phosphatidylinositol 3-kinase/Akt pathway-mediated metastasis of gastric cancer. Int J Cancer 2007;121:2547–55.
[26] Chiou S H, Kao C L, Peng C H, Chen S J, Tarng Y W, Yang D M, et al. A novel in vitro retinal differentiation model by co-culturing adult human bone marrow stem cells with retinal pigmented epithelium cells. Biochem Biophys Res Commun 2005; 326:578–85.
[27] Park J, Bauer S, vonder Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate.Nano Lett 2007; 7:1686–91.
[28] Chen J Y, Chen Z H, Lee T L, Yang M L, Lee T H, Liu C M, et al. Titanium surface blood coagulation changes induced by electrochemical anodization treatment. J Chin Corr Eng 2008; 22:51–8.
[29] Kasemo B, Lausmaa J. Surface science aspects on inorganic biomaterials. CRC Crit Rev Biocomp 1986; 2:335–80.
[30] Arnold M, Cavalcanti-AdamE A, Glass R, Blmmel J, Eck W, Kantlehner M, et al. ChemPhysChem 2004;5:383–8.
[31] Woo K M, Chen V J, Ma P X. Nano-brous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res 2003; 67A:531–7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top