跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 03:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊智堯
研究生(外文):Chih-Yao Yang
論文名稱:人類巨細胞病毒臨床分離株之UL18基因變異研究
論文名稱(外文):Study the genetic variation of human cytomegalovirus UL18 gene from clinical isolates
指導教授:馮長風馮長風引用關係詹宇鈞詹宇鈞引用關係
指導教授(外文):Chang-Phone FungYu-Jiun Chan
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:52
中文關鍵詞:人類巨細胞病毒UL18臨床變異
外文關鍵詞:human cytomegalovirusUL18clinical variation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類巨細胞病毒是個普遍存在世界各地的病毒。臨床上分離出的人類巨細胞病毒可轉譯出高達200種基因,其中部份基因產物與調控宿主的免疫反應有關。然而,在實驗室病毒株中,例如AD169,卻因基因缺失或產生突變而失去部分這方面的能力。UL18蛋白,一種由HCMV所轉譯的人類MHC-I類似物,可在宿主的MHC-I因人類巨細胞病毒感染而降低表現時開始轉譯,且由於UL18能與一種在自然殺手細胞上的免疫抑制受器LIR-1結合,因此UL18被認為可能與逃避自然殺手細胞的攻擊有關。然而,目前鮮少有關UL18臨床變異的研究。本研究進行95個臨床UL18序列的分析發現這些序列存在高度變異,且胺基酸的置換多發生在細胞外的區域(α1、α2與α3),然而與LIR-1結合的重要α3結構區卻相對保守。UL18獨特的13個N型醣化位點與3個雙硫鍵位置均未發生改變,說明這些特性可能有其重要性因而能被保存下來。
此外,在進行UL18的相關研究時,目前並無可表現UL18的永久細胞株。在本研究中,吾人建立一種可誘導式的UL18表現系統。該系統採用三種人類的上皮細胞株293A、293T與HeLa為表現平台,並以四環黴素為UL18表現的誘導物。透過這種方式,或許能提供一種較適於進行UL18研究的實驗工具。
Human cytomegalovirus (HCMV) is a ubiquitous virus and its infection occuurs worldwide. The clinical HCMV isolates can encode up to 200 genes, some of them are related to modulate host immunity responses. However, the laboratory strain, such as AD169, partially loses this ability due to the gene loss or mutation. The UL18 protein, a HCMV-encoded human class I major histocompatibility complex (MHC-I) homologue that transcribed after the host MHC-I been downregulated by HCMV infection, has been proposed to protect virus-infected cells against NK cell recognition by engaging the inhibitory receptor leukocyte Ig-like receptor (LIR)-1, which also binds to MHC-I. Although UL18 may play important roles in clinical HCMV infection, there is little information about the clinical variations of UL18. In this study, 95 clinical UL18 sequences were analysed and revealed highly variable. Most amino acid substitutions took place at extracellular region (α1、α2 and α3), but the critical domain (α3) for LIR-1 binding was relatively conserved. The 13 unique N-glycosylation sites and 3 disulfide bonds of UL18 were also conserved, indicating that these properities are important so they can be maintain in HCMV genome under selecting pressure.
In addition, there is no permenant UL18 expressing cell line for studying UL18. In this study, an induciable UL18 expression system has been established. Three human epithelial cell lines 293A, 293T and Hela were adopted and the expression of UL18 was regulated by tetracycline induction. This provides a potential tool for further study on UL18.
誌謝 i
摘要 ii
Abstract iii
縮寫列表 iv
目錄 v
表目錄 vii
圖目錄 vii
第一章 緒論 1
第一節 人類巨細胞病毒 1
一、 歷史 1
二、 基本特性 1
三、 病毒感染與複製 3
四、 流行概況 5
五、 臨床病徵 5
六、 診斷 6
七、 預防與治療 7
八、 人類巨細胞病毒臨床分離株與實驗室適應株之差異 8
第二節 人類巨細胞病毒感染與宿主免疫調控 9
一、 受感染細胞之清除機制 9
二、 人類巨細胞病毒之UL18及其功能 10
第三節 實驗緣由與研究設計 11
一、 動機 11
二、 目的 12
三、 研究設計 12
第二章 研究材料與方法 13
第一節 臨床UL18變異分析 13
一、 檢體來源 13
二、 病毒核酸萃取 13
三、 巢式聚合酶連鎖反應 13
四、 UL18核酸序列定序與基因變異分析 14
第二節 建立可誘導之UL18-GFP表現細胞株 15
一、 UL18與GFP之基因選殖 16
二、 UL18-GFP融合蛋白之基因選殖 18
三、 構築表現質體pcDNA4B_UL18-GFP 19
四、 大量質體製備與純化 20
五、 細胞轉染 20
第三節 誘導UL18-GFP融合蛋白表現 21
一、 以RT-PCR方式偵測誘導後之UL18-GFP mRNA 23
二、 以西方墨點法偵測誘導後之UL18-GFP融合蛋白表現 24
第三章 實驗結果 26
第一節 臨床UL18基因序列分析 26
一、 UL18序列相似度分析 26
二、 UL18胺基酸變異分析 26
第二節 UL18-GFP表現細胞株建構 28
一、 螢光顯微鏡觀察 28
二、 UL18-GFP mRNA偵測 28
三、 驗證UL18-GFP融合蛋白表現 29
第四章 討論與結論 30
第一節 實驗結果討論 30
第二節 未來研究方向 32
參考文獻 34
圖表 42
1. Ribbert, H., Ueber protozoenartige Zellen in der Niere eines syphilitischen Neugeborenen und in der Parotis von Kindern. Zentralbl Allg Pathol, 1904. 15: p. 945-948.
2. Jesionek, A. and Kiolemenoglou, B., Ueber einen Befund von protozoenartigen Gebilden in den Organen eines hereditar-luetischen Foetus. Muenchner Med Wochenschr, 1904. 51: p. 1905–1907.
3. VonGlahn, W.C. and Pappenheimer, A.M., Intranuclear inclusions in visceral disease. American Journal of Pathology, 1925. 1: p. 445-465.
4. Farber, S. and Wolbach, S., Intranuclear and cytoplasmic inclusions (protozoan-like bodies) in the salivary glands and other organs of children. American Journal of Pathology, 1932. 8: p. 123-135.
5. Wyatt, J.P. and Saxton, J., Generalized cytomegalic inclusion disease. Journal of Pediatrics, 1950. 36(3): p. 271-94, illust.
6. Minder, W.H., Die Aetiologie der Cytomegalia infantum. Schweiz Med Wochenschr, 1953. 83(49): p. 1180-2.
7. Enders, J.F., Weller, T.H., and Robbins, F.C., Cultivation of the Lansing Strain of Poliomyelitis Virus in Cultures of Various Human Embryonic Tissues. Science, 1949. 109(2822): p. 85-87.
8. Craig, J.M., Macauley, J.C., Weller, T.H., and Wirth, P., Isolation of intranuclear inclusion producing agents from infants with illnesses resembling cytomegalic inclusion disease. Proc Soc Exp Biol Med, 1957. 94(1): p. 4-12.
9. Liu, F. and Zhou, Z.H., Comparative virion structures of human herpesviruses, in Human Herpesviruses - Biology, Therapy, and Immunoprophylaxis, Arvin, A., Campadelli-Fiume, G., Mocarski, E., Moore, P.S., Roizman, B., Whitley, R., et al., Editors. 2006, Cambridge University Press. p. 27-43.
10. Davison, A.J., Dolan, A., Akter, P., Addison, C., Dargan, D.J., Alcendor, D.J., et al., The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. Journal of General Virology, 2003. 84(Pt 1): p. 17-28.
11. Dolan, A., Cunningham, C., Hector, R.D., Hassan-Walker, A.F., Lee, L., Addison, C., et al., Genetic content of wild-type human cytomegalovirus. Journal of General Virology, 2004. 85(Pt 5): p. 1301-12.
12. Pellett, P.E. and Roizman, B., The Herpesviridae: a brief introduction, in Fields virology, DM, K., PM, H., DE, G., RA, L., MA, M., B, R., et al., Editors. 2006, Lippincott, Williams & Wilkins. p. 2479-2499.
13. Yu, D., Silva, M.C., and Shenk, T., Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(21): p. 12396-401.
14. Dunn, W., Chou, C., Li, H., Hai, R., Patterson, D., Stolc, V., et al., Functional profiling of a human cytomegalovirus genome. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(24): p. 14223-8.
15. Sinzger, C., Grefte, A., Plachter, B., Gouw, A.S., The, T.H., and Jahn, G., Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. Journal of General Virology, 1995. 76 ( Pt 4): p. 741-50.
16. Gerna, G., Baldanti, F., and Revello, M.G., Pathogenesis of human cytomegalovirus infection and cellular targets. Human Immunology, 2004. 65(5): p. 381-6.
17. Grefte, A., Harmsen, M.C., van der Giessen, M., Knollema, S., van Son, W.J., and The, T.H., Presence of human cytomegalovirus (HCMV) immediate early mRNA but not ppUL83 (lower matrix protein pp65) mRNA in polymorphonuclear and mononuclear leukocytes during active HCMV infection. Journal of General Virology, 1994. 75 ( Pt 8): p. 1989-98.
18. Sinzger, C. and Jahn, G., Human cytomegalovirus cell tropism and pathogenesis. Intervirology, 1996. 39(5-6): p. 302-19.
19. Gratacap-Cavallier, B., Bosson, J.L., Morand, P., Dutertre, N., Chanzy, B., Jouk, P.S., et al., Cytomegalovirus seroprevalence in French pregnant women: parity and place of birth as major predictive factors. European Journal of Epidemiology, 1998. 14(2): p. 147-52.
20. Hizel, S., Parker, S., and Onde, U., Seroprevalence of cytomegalovirus infection among children and females in Ankara, Turkey, 1995. Pediatrics International, 1999. 41(5): p. 506-9.
21. Coen, D.M. and Schaffer, P.A., Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nature Reviews Drug Discovery, 2003. 2(4): p. 278-88.
22. Revello, M.G., Zavattoni, M., Furione, M., Lilleri, D., Gorini, G., and Gerna, G., Diagnosis and outcome of preconceptional and periconceptional primary human cytomegalovirus infections. Journal of Infectious Diseases, 2002. 186(4): p. 553-7.
23. Collinet, P., Subtil, D., Houfflin-Debarge, V., Kacet, N., Dewilde, A., and Puech, F., Routine CMV screening during pregnancy. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 2004. 114(1): p. 3-11.
24. Zhang, X.W., Li, F., Yu, X.W., Shi, X.W., Shi, J., and Zhang, J.P., Physical and intellectual development in children with asymptomatic congenital cytomegalovirus infection: a longitudinal cohort study in Qinba mountain area, China. Journal of Clinical Virology, 2007. 40(3): p. 180-5.
25. Hassan, J. and Connell, J., Translational mini-review series on infectious disease: congenital cytomegalovirus infection: 50 years on. Clinical and Experimental Immunology, 2007. 149(2): p. 205-10.
26. Arav-Boger, R. and Pass, R.F., Diagnosis and management of cytomegalovirus infection in the newborn. Pediatric Annals, 2002. 31(11): p. 719-25.
27. Rafailidis, P.I., Mourtzoukou, E.G., Varbobitis, I.C., and Falagas, M.E., Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review. Virology Journal, 2008. 5: p. 47.
28. Gandhi, M.K. and Khanna, R., Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infectious Diseases, 2004. 4(12): p. 725-38.
29. Elek, S.D. and Stern, H., Development of a vaccine against mental retardation caused by cytomegalovirus infection in utero. Lancet, 1974. 1(7845): p. 1-5.
30. Plotkin, S.A., Starr, S.E., Friedman, H.M., Brayman, K., Harris, S., Jackson, S., et al., Effect of Towne live virus vaccine on cytomegalovirus disease after renal transplant. A controlled trial. Annals of Internal Medicine, 1991. 114(7): p. 525-31.
31. Pass, R.F., Duliege, A.M., Boppana, S., Sekulovich, R., Percell, S., Britt, W., et al., A subunit cytomegalovirus vaccine based on recombinant envelope glycoprotein B and a new adjuvant. Journal of Infectious Diseases, 1999. 180(4): p. 970-5.
32. Pande, H., Campo, K., Tanamachi, B., Forman, S.J., and Zaia, J.A., Direct DNA immunization of mice with plasmid DNA encoding the tegument protein pp65 (ppUL83) of human cytomegalovirus induces high levels of circulating antibody to the encoded protein. Scandinavian Journal of Infectious Diseases. Supplementum, 1995. 99: p. 117-20.
33. Endresz, V., Kari, L., Berencsi, K., Kari, C., Gyulai, Z., Jeney, C., et al., Induction of human cytomegalovirus (HCMV)-glycoprotein B (gB)-specific neutralizing antibody and phosphoprotein 65 (pp65)-specific cytotoxic T lymphocyte responses by naked DNA immunization. Vaccine, 1999. 17(1): p. 50-8.
34. Endresz, V., Burian, K., Berencsi, K., Gyulai, Z., Kari, L., Horton, H., et al., Optimization of DNA immunization against human cytomegalovirus. Vaccine, 2001. 19(28-29): p. 3972-80.
35. Mercorelli, B., Sinigalia, E., Loregian, A., and Palu, G., Human cytomegalovirus DNA replication: antiviral targets and drugs. Reviews in Medical Virology, 2008. 18(3): p. 177-210.
36. Digel, M. and Sinzger, C., Determinants of endothelial cell tropism of human cytomegalovirus. Cytomegaloviruses: Molecular biology and immunology, ed. Reddehase, M. 2006, Norfolk, United Kingdom: Caister Academic Press.
37. Quinnan, G.V., Jr., Delery, M., Rook, A.H., Frederick, W.R., Epstein, J.S., Manischewitz, J.F., et al., Comparative virulence and immunogenicity of the Towne strain and a nonattenuated strain of cytomegalovirus. Annals of Internal Medicine, 1984. 101(4): p. 478-83.
38. Cha, T.A., Tom, E., Kemble, G.W., Duke, G.M., Mocarski, E.S., and Spaete, R.R., Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. Journal of Virology, 1996. 70(1): p. 78-83.
39. Mocarski, E.S., Prichard, M.N., Tan, C.S., and Brown, J.M., Reassessing the organization of the UL42-UL43 region of the human cytomegalovirus strain AD169 genome. Virology, 1997. 239(1): p. 169-75.
40. Murphy, E., Rigoutsos, I., Shibuya, T., and Shenk, T.E., Reevaluation of human cytomegalovirus coding potential. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(23): p. 13585-90.
41. Tomasec, P., Wang, E.C., Davison, A.J., Vojtesek, B., Armstrong, M., Griffin, C., et al., Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nature Immunology, 2005. 6(2): p. 181-8.
42. Chalupny, N.J., Rein-Weston, A., Dosch, S., and Cosman, D., Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochemical and Biophysical Research Communications, 2006. 346(1): p. 175-81.
43. Benedict, C.A., Butrovich, K.D., Lurain, N.S., Corbeil, J., Rooney, I., Schneider, P., et al., Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. Journal of Immunology, 1999. 162(12): p. 6967-70.
44. Cosman, D., Fanger, N., Borges, L., Kubin, M., Chin, W., Peterson, L., et al., A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity, 1997. 7(2): p. 273-82.
45. Ljunggren, H.G. and Karre, K., In search of the 'missing self': MHC molecules and NK cell recognition. Immunology Today, 1990. 11(7): p. 237-44.
46. Brown, D., Trowsdale, J., and Allen, R., The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens, 2004. 64(3): p. 215-25.
47. Fanger, N.A., Borges, L., and Cosman, D., The leukocyte immunoglobulin-like receptors (LIRs): a new family of immune regulators. Journal of Leukocyte Biology, 1999. 66(2): p. 231-6.
48. Colonna, M., Navarro, F., Bellon, T., Llano, M., Garcia, P., Samaridis, J., et al., A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. Journal of Experimental Medicine, 1997. 186(11): p. 1809-18.
49. Vitale, M., Castriconi, R., Parolini, S., Pende, D., Hsu, M.L., Moretta, L., et al., The leukocyte Ig-like receptor (LIR)-1 for the cytomegalovirus UL18 protein displays a broad specificity for different HLA class I alleles: analysis of LIR-1 + NK cell clones. International Immunology, 1999. 11(1): p. 29-35.
50. Chapman, T.L., Heikeman, A.P., and Bjorkman, P.J., The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity, 1999. 11(5): p. 603-13.
51. Shiroishi, M., Tsumoto, K., Amano, K., Shirakihara, Y., Colonna, M., Braud, V.M., et al., Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(15): p. 8856-61.
52. Ahn, K., Gruhler, A., Galocha, B., Jones, T.R., Wiertz, E.J., Ploegh, H.L., et al., The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity, 1997. 6(5): p. 613-21.
53. Jones, T.R., Wiertz, E.J., Sun, L., Fish, K.N., Nelson, J.A., and Ploegh, H.L., Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(21): p. 11327-33.
54. Wiertz, E.J., Jones, T.R., Sun, L., Bogyo, M., Geuze, H.J., and Ploegh, H.L., The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell, 1996. 84(5): p. 769-79.
55. Wiertz, E.J., Tortorella, D., Bogyo, M., Yu, J., Mothes, W., Jones, T.R., et al., Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature, 1996. 384(6608): p. 432-8.
56. Beck, S. and Barrell, B.G., Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature, 1988. 331(6153): p. 269-72.
57. Park, B., Oh, H., Lee, S., Song, Y., Shin, J., Sung, Y.C., et al., The MHC class I homolog of human cytomegalovirus is resistant to down-regulation mediated by the unique short region protein (US)2, US3, US6, and US11 gene products. Journal of Immunology, 2002. 168(7): p. 3464-9.
58. Browne, H., Smith, G., Beck, S., and Minson, T., A complex between the MHC class I homologue encoded by human cytomegalovirus and beta 2 microglobulin. Nature, 1990. 347(6295): p. 770-2.
59. Fahnestock, M.L., Johnson, J.L., Feldman, R.M., Neveu, J.M., Lane, W.S., and Bjorkman, P.J., The MHC class I homolog encoded by human cytomegalovirus binds endogenous peptides. Immunity, 1995. 3(5): p. 583-90.
60. Griffin, C., Wang, E.C., McSharry, B.P., Rickards, C., Browne, H., Wilkinson, G.W., et al., Characterization of a highly glycosylated form of the human cytomegalovirus HLA class I homologue gpUL18. Journal of General Virology, 2005. 86(Pt 11): p. 2999-3008.
61. Wagner, C.S., Ljunggren, H.G., and Achour, A., Immune modulation by the human cytomegalovirus-encoded molecule UL18, a mystery yet to be solved. Journal of Immunology, 2008. 180(1): p. 19-24.
62. Reyburn, H.T., Mandelboim, O., Vales-Gomez, M., Davis, D.M., Pazmany, L., and Strominger, J.L., The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature, 1997. 386(6624): p. 514-7.
63. Kim, J.S., Choi, S.E., Yun, I.H., Kim, J.Y., Ahn, C., Kim, S.J., et al., Human cytomegalovirus UL18 alleviated human NK-mediated swine endothelial cell lysis. Biochemical and Biophysical Research Communications, 2004. 315(1): p. 144-50.
64. Odeberg, J., Cerboni, C., Browne, H., Karre, K., Moller, E., Carbone, E., et al., Human cytomegalovirus (HCMV)-infected endothelial cells and macrophages are less susceptible to natural killer lysis independent of the downregulation of classical HLA class I molecules or expression of the HCMV class I homologue, UL18. Scandinavian Journal of Immunology, 2002. 55(2): p. 149-61.
65. Leong, C.C., Chapman, T.L., Bjorkman, P.J., Formankova, D., Mocarski, E.S., Phillips, J.H., et al., Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: the role of endogenous class I major histocompatibility complex and a viral class I homolog. Journal of Experimental Medicine, 1998. 187(10): p. 1681-7.
66. Wagner, C.S., Walther-Jallow, L., Buentke, E., Ljunggren, H.G., Achour, A., and Chambers, B.J., Human cytomegalovirus-derived protein UL18 alters the phenotype and function of monocyte-derived dendritic cells. Journal of Leukocyte Biology, 2008. 83(1): p. 56-63.
67. Saverino, D., Ghiotto, F., Merlo, A., Bruno, S., Battini, L., Occhino, M., et al., Specific recognition of the viral protein UL18 by CD85j/LIR-1/ILT2 on CD8+ T cells mediates the non-MHC-restricted lysis of human cytomegalovirus-infected cells. Journal of Immunology, 2004. 172(9): p. 5629-37.
68. Hassan-Walker, A.F., Cope, A.V., Griffiths, P.D., and Emery, V.C., Transcription of the human cytomegalovirus natural killer decoy gene, UL18, in vitro and in vivo. Journal of General Virology, 1998. 79 ( Pt 9): p. 2113-6.
69. Wagner, C.S., Riise, G.C., Bergstrom, T., Karre, K., Carbone, E., and Berg, L., Increased expression of leukocyte Ig-like receptor-1 and activating role of UL18 in the response to cytomegalovirus infection. Journal of Immunology, 2007. 178(6): p. 3536-43.
70. Cerboni, C., Achour, A., Warnmark, A., Mousavi-Jazi, M., Sandalova, T., Hsu, M.L., et al., Spontaneous mutations in the human CMV HLA class I homologue UL18 affect its binding to the inhibitory receptor LIR-1/ILT2/CD85j. European Journal of Immunology, 2006. 36(3): p. 732-41.
71. Vales-Gomez, M., Shiroishi, M., Maenaka, K., and Reyburn, H.T., Genetic variability of the major histocompatibility complex class I homologue encoded by human cytomegalovirus leads to differential binding to the inhibitory receptor ILT2. Journal of Virology, 2005. 79(4): p. 2251-60.
72. Willcox, B.E., Thomas, L.M., Chapman, T.L., Heikema, A.P., West, A.P., Jr., and Bjorkman, P.J., Crystal structure of LIR-2 (ILT4) at 1.8 A: differences from LIR-1 (ILT2) in regions implicated in the binding of the Human Cytomegalovirus class I MHC homolog UL18. BMC Structural Biology, 2002. 2: p. 6.
73. Garrigue, I., Corte, M.F., Magnin, N., Couzi, L., Capdepont, S., Rio, C., et al., Variability of UL18, UL40, UL111a and US3 immunomodulatory genes among human cytomegalovirus clinical isolates from renal transplant recipients. Journal of Clinical Virology, 2007. 40(2): p. 120-8.
74. Yang, Z. and Bjorkman, P.J., Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(29): p. 10095-100.
75. Kim, Y., Park, B., Cho, S., Shin, J., Cho, K., Jun, Y., et al., Human cytomegalovirus UL18 utilizes US6 for evading the NK and T-cell responses. PLoS Pathogens, 2008. 4(8): p. e1000123.
76. Maffei, M., Ghiotto, F., Occhino, M., Bono, M., De Santanna, A., Battini, L., et al., Human cytomegalovirus regulates surface expression of the viral protein UL18 by means of two motifs present in the cytoplasmic tail. Journal of Immunology, 2008. 180(2): p. 969-79.
77. Occhino, M., Ghiotto, F., Soro, S., Mortarino, M., Bosi, S., Maffei, M., et al., Dissecting the structural determinants of the interaction between the human cytomegalovirus UL18 protein and the CD85j immune receptor. Journal of Immunology, 2008. 180(2): p. 957-68.
78. Held, W. and Mariuzza, R.A., Cis interactions of immunoreceptors with MHC and non-MHC ligands. Nature Reviews Immunology, 2008. 8(4): p. 269-78.
79. Berg, L., Riise, G.C., Cosman, D., Bergstrom, T., Olofsson, S., Karre, K., et al., LIR-1 expression on lymphocytes, and cytomegalovirus disease in lung-transplant recipients. Lancet, 2003. 361(9363): p. 1099-101.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top