跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳錦龍
研究生(外文):Jin-Long Chen
論文名稱:甲狀腺功能亢進患者的自主神經系統評估
論文名稱(外文):EVALUATION OF AUTONOMIC NERVOUS SYSTEM IN PATIENTS WITH HYPERTHYROIDISM
指導教授:朱唯勤朱唯勤引用關係
指導教授(外文):Woei-Chyn Chu
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:51
中文關鍵詞:甲狀腺功能亢進自主神經系統心率變異度非線性動力學
外文關鍵詞:hyperthyroidismautonomic nervous systemheart rate variabilitynonlinear dynamics
相關次數:
  • 被引用被引用:6
  • 點閱點閱:397
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
背景:甲狀腺功能亢進患者的臨床表徵類似於交感神經興奮的狀態,這個觀察支持甲狀腺功能亢進併有自主神經系統異常的觀念。過去曾有很多的研究探討甲狀腺功能亢進與交感神經興奮狀態的關聯性,然而這些研究顯示互相矛盾的結論。心率變異度 (heart rate variability) 的分析是一種檢查心臟受自主神經調控的有效工具,而且可用來評估心率動力學的特徵。過去曾有研究,運用線性的心率變異度分析法,評估甲狀腺功能亢進患者的心血管自主神經系統,主要發現甲狀腺功能亢進患者的副交感神經系統對心跳速率的調控是被抑制的或是正常的。然而,心臟血管系統的生理學研究顯示,心跳速率訊號的產生,是受到非線性的混沌動力系統的調控。過去尚未有以非線性的心率變異度分析法,評估甲狀腺功能亢進患者的研究。

目標:本研究運用線性與非線性的心率變異度分析法,對甲狀腺功能亢進患者,評估甲狀腺功能亢進對自主神經系統所造成的影響。

方法:收集甲狀腺功能亢進的葛雷夫茲式病 (Graves’ disease) 的患者36人 (女性32與男性4;年齡30 ± 1歲,平均值 ± 標準誤),與一批於性別、年齡與身體質量指數相當的正常對照組36人接受心電圖量測。從正常的R波與R波間隔序列 (R-R interval series),計算時間域與頻率域的心率變異度參數,相關維度 [correlation dimension (CD)],與去趨勢化變動分析 (detrended fluctuation analysis) 的參數。

結果:相較於正常對照組,甲狀腺功能亢進患者的平均R波與R波間隔 (mean R-R interval),R波與R波間隔標準差 [standard deviation of R-R intervals (SDNN)],總功率 [total power (TP)],極低頻功率 [very low frequency power (VLF)],低頻功率 [low frequency power (LF)],高頻功率 [high frequency power (HF)],標準化高頻功率 [high frequency power in normalized units (HF%)],與相關維度均降低 (P < 0.001);而其標準化低頻功率 [low frequency in normalized units (LF%)],低頻功率相對高頻功率比值 [the ratio of low frequency power to high frequency power (LF/HF)],短期比例指數 [short-term scaling exponent (α1)],長期比例指數 [long-term scaling exponent (α2)],與全體比例指數 [overall scaling exponent (α)] 是增加的 (P < 0.001)。

結論:運用線性與非線性的心率變異度分析法,我們證實甲狀腺功能亢進具有交感神經興奮與副交感神經被抑制的特徵。甲狀腺功能亢進的交感與副交感不平衡狀態,幫助解釋了甲狀腺功能亢進患者的高心房顫動盛行率與運動無法持久現象。而且,甲狀腺功能亢進患者的相關維度減低,表示甲狀腺功能亢進是處在一種系統複雜度降低與心臟血管受壓力之耐受度降低的狀態。此外,部分心率變異度的參數,能反映出甲狀腺功能亢進患者的疾病嚴重度。
Background: The observation that hyperthyroid patients manifest symptoms and signs similar to those of hyperadrenergic states suggests autonomic dysfunctions in hyperthyroidism. Despite many previous studies on the association between hyperthyroidism and the hyperadrenergic state, controversies still exist. The analysis of heart rate variability (HRV) is a useful tool to assess the modulation of cardiac autonomic nervous system and the characteristics of the heart rate dynamics. Among studies using linear analysis of HRV to investigate the autonomic nervous system functions in hyperthyroidism, some disclosed reduced vagal activity, whereas others showed no vagal activity impairment. However, studies on the physiology of the cardiovascular system suggested that the generation of the heart rate signal is governed by nonlinear chaotic dynamics. No study has investigated the nonlinear dynamics of heart rate in hyperthyroidism.

Objective: This study was designed to evaluate the impact of hyperthyroidism on the autonomic nervous system via linear and nonlinear analysis of heart rate dynamics in patients with hyperthyroidism.

Methods: Thirty-six hyperthyroid Graves’ disease patients (32 females and 4 males; age 30 ± 1 years, means ± SE) and 36 sex-, age-, and body mass index-matched normal control subjects were recruited to receive electrocardiogram (ECG) recording. Time and frequency domain HRV parameters, as well as correlation dimension (CD) and detrended fluctuation analysis (DFA) parameters were computed from the normal R-R interval series.

Results: The hyperthyroid patients revealed significant differences (P < 0.001) compared with the normal controls in the following HRV parameters: a decrease in the mean R-R intervals, the standard deviation of R-R intervals (SDNN), total power (TP), very low frequency power (VLF), low frequency power (LF), high frequency power (HF), HF in normalized units (HF%), and CD; and an increase in LF in normalized units (LF%), the ratio of LF to HF (LF/HF), short-term scaling exponent α1, long-term scaling exponent α2, and overall scaling exponent α.

Conclusions: Using linear and nonlinear analysis of HRV, we have shown that hyperthyroidism is characterized by concurrent sympathetic activation and vagal withdrawal. This sympathovagal imbalance state in hyperthyroidism helps to explain the higher prevalence of atrial fibrillation and exercise intolerance among hyperthyroid patients. In addition, the decreased CD in hyperthyroid patients implies reduced complexity and impaired tolerance to cardiovascular stresses in hyperthyroidism. Furthermore, some HRV parameters could reflect the disease severity in hyperthyroid patients.
Abstract(Chinese)..........................................1
Abstract...................................................3
1Introduction..............................................5
2Methods...................................................9
2.1Subjects................................................9
2.2Studyprotocol...........................................9
2.3 Measurement of the ECG................................10
2.4 Linear analysis of HRV................................10
2.5 Correlation dimension analysis of HRV.................10
2.6 Detrended fluctuation analysis of HRV.................12
2.7 Assays................................................14
2.8 Statistical analysis..................................14
3 Results.................................................15
3.1 Patient profile.......................................15
3.2 Linear analysis of HRV................................15
3.3 Correlation dimension analysis of HRV.................19
3.4 Detrended fluctuation analysis of HRV.................23
3.5 Correlation analysis..................................28
4 Discussion..............................................32
4.1 Linear analysis.......................................32
4.2 Correlation dimension analysis........................34
4.3 Detrended fluctuation analysis........................36
4.4 Correlation analysis..................................39
5 Conclusions.............................................41
6 References..............................................42
1. Levey GS, Klein I. Catecholamine-thyroid hormone interactions and the cardiovascular manifestations of hyperthyroidism. Am J Med 1990;88:642-646.
2. Fazio S, Palmieri EA, Lombardi G, Biondi B. Effects of thyroid hormone on the cardiovascular system. Recent Prog Horm Res 2004;59:31-50.
3. Coulombe P, Dussault JH, Walker P. Plasma catecholamine concentrations in hyperthyroidism and hypothyroidism. Metabolism 1976;25:973-979.
4. Moghetti P, Castello R, Tosi F, Zenti MG, Magnani C, Bolner A, Perobelli L, Muggeo M. Glucose counterregulatory response to acute hypoglycemia in hyperthyroid human subjects. J Clin Endocrinol Metab 1994;78:169-173.
5. Coulombe P, Dussault JH, Letarte J, Simmard SJ. Catecholamines metabolism in thyroid diseases. I. Epinephrine secretion rate in hyperthyroidism and hypothyroidism. J Clin Endocrinol Metab 1976;42:125-131.
6. Coulombe P, Dussault JH, Walker P. Catecholamine metabolism in thyroid disease. II. Norepinephrine secretion rate in hyperthyroidism and hypothyroidism. J Clin Endocrinol Metab 1977;44:1185-1189.
7. Bilezikian JP, Loeb JN. The influence of hyperthyroidism and hypothyroidism on alpha- and beta-adrenergic receptor systems and adrenergic responsiveness. Endocr Rev 1983;4:378-388.
8. Liggett SB, Shah SD, Cryer PE. Increased fat and skeletal muscle beta-adrenergic receptors but unaltered metabolic and hemodynamic sensitivity to epinephrine in vivo in experimental human thyrotoxicosis. J Clin Invest 1989;83:803-809.
9. Levine MA, Feldman AM, Robishaw JD, Ladenson PW, Ahn TG, Moroney JF, Smallwood PM. Influence of thyroid hormone status on expression of genes encoding G protein subunits in the rat heart. J Biol Chem 1990;265:3553-3560.
10. Dratman MB, Goldman M, Crutchfield FL, Gordon JT. Nervous system role of iodocompounds in blood pressure regulation. Life Sci 1982;30:611-618.
11. Heimbach DM, Crout JR. Effect of atropine on the tachycardia of hyperthyroidism. Arch Intern Med 1972;129:430-432.
12. Maciel BC, Gallo L, Jr., Marin Neto JA, Maciel LM, Alves ML, Paccola GM, Iazigi N. The role of the autonomic nervous system in the resting tachycardia of human hyperthyroidism. Clin Sci (Lond) 1987;72:239-244.
13. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996;93:1043-1065.
14. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 1981;213:220-222.
15. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell'Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 1986;59:178-193.
16. Petretta M, Bonaduce D, Spinelli L, Vicario ML, Nuzzo V, Marciano F, Camuso P, De Sanctis V, Lupoli G. Cardiovascular haemodynamics and cardiac autonomic control in patients with subclinical and overt hyperthyroidism. Eur J Endocrinol 2001;145:691-696.
17. Osman F, Franklyn JA, Daykin J, Chowdhary S, Holder RL, Sheppard MC, Gammage MD. Heart rate variability and turbulence in hyperthyroidism before, during, and after treatment. Am J Cardiol 2004;94:465-469.
18. Cacciatori V, Bellavere F, Pezzarossa A, Dellera A, Gemma ML, Thomaseth K, Castello R, Moghetti P, Muggeo M. Power spectral analysis of heart rate in hyperthyroidism. J Clin Endocrinol Metab 1996;81:2828-2835.
19. Inukai T, Takanashi K, Kobayashi H, Fujiwara Y, Tayama K, Aso Y, Takemura Y. Power spectral analysis of variations in heart rate in patients with hyperthyroidism or hypothyroidism. Horm Metab Res 1998;30:531-535.
20. Burggraaf J, Tulen JH, Lalezari S, Schoemaker RC, De Meyer PH, Meinders AE, Cohen AF, Pijl H. Sympathovagal imbalance in hyperthyroidism. Am J Physiol Endocrinol Metab 2001;281:E190-E195.
21. Pitzalis MV, Mastropasqua F, Massari F, Ciampolillo A, Passantino A, Ognissanti M, Mannarini A, Zanna D, Giorgino R, Rizzon P. Assessment of cardiac vagal activity in patients with hyperthyroidism. Int J Cardiol 1998;64:145-151.
22. Denton TA, Diamond GA, Helfant RH, Khan S, Karagueuzian H. Fascinating rhythm: a primer on chaos theory and its application to cardiology. Am Heart J 1990;120:1419-1440.
23. Goldberger AL. Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 1996;347:1312-1314.
24. Babloyantz A, Destexhe A. Is the normal heart a periodic oscillator? Biol Cybern 1988;58:203-211.
25. Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N. Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol Rev 1994;74:1-47.
26. Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC, Peng C-K, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A 2002;99 Suppl 1:2466-2472.
27. Guevara MR, Glass L, Shrier A. Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science 1981;214:1350-1353.
28. Stein KM, Lippman N, Kligfield P. Fractal rhythms of the heart. J Electrocardiol 1992;24 Suppl:72-76.
29. Mayer-Kress G, Layne SP. Dimensionality of the human electroencephalogram. Ann NY Acad Sci 1987;504:62-87.
30. Elger CE, Lehnertz K. Seizure prediction by non-linear time series analysis of brain electrical activity. Eur J Neurosci 1998;10:786-789.
31. Hoyer D, Schmidt K, Bauer R, Zwiener U, Kohler M, Luthke B, Eiselt M. Nonlinear analysis of heart rate and respiratory dynamics. IEEE Eng Med Biol Mag 1997;16:31-39.
32. Hartman ML, Pincus SM, Johnson ML, Matthews DH, Faunt LM, Vance ML, Thorner MO, Veldhuis JD. Enhanced basal and disorderly growth hormone secretion distinguish acromegalic from normal pulsatile growth hormone release. J Clin Invest 1994;94:1277-1288.
33. Meneilly GS, Ryan AS, Veldhuis JD, Elahi D. Increased disorderliness of basal insulin release, attenuated insulin secretory burst mass, and reduced ultradian rhythmicity of insulin secretion in older individuals. J Clin Endocrinol Metab 1997;82:4088-4093.
34. Veldman RG, Frolich M, Pincus SM, Veldhuis JD, Roelfsema F. Growth hormone and prolactin are secreted more irregularly in patients with Cushing's disease. Clin Endocrinol (Oxf) 2000;52:625-632.
35. Mandelbrot BB. The Fractal Geometry of Nature. New York: Freeman, 1982.
36. Grassberger P, Procaccia I. Characterization of strange attractors. Phys Rev Lett 1983;50:346-349.
37. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D 1983;9:189-208.
38. Lipsitz LA, Goldberger AL. Loss of 'complexity' and aging. Potential applications of fractals and chaos theory to senescence. JAMA 1992;267:1806-1809.
39. Lombardi F, Sandrone G, Mortara A, Torzillo D, La Rovere MT, Signorini MG, Cerutti S, Malliani A. Linear and nonlinear dynamics of heart rate variability after acute myocardial infarction with normal and reduced left ventricular ejection fraction. Am J Cardiol 1996;77:1283-1288.
40. Peng C-K, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995;5:82-87.
41. Ho KK, Moody GB, Peng C-K, Mietus JE, Larson MG, Levy D, Goldberger AL. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 1997;96:842-848.
42. Mäkikallio TH, Ristimäe T, Airaksinen KE, Peng C-K, Goldberger AL, Huikuri HV. Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. Am J Cardiol 1998;81:27-31.
43. Tapanainen JM, Thomsen PE, Kober L, Torp-Pedersen C, Mäkikallio TH, Still AM, Lindgren KS, Huikuri HV. Fractal analysis of heart rate variability and mortality after an acute myocardial infarction. Am J Cardiol 2002;90:347-352.
44. Stein PK, Domitrovich PP, Huikuri HV, Kleiger RE. Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. J Cardiovasc Electrophysiol 2005;16:13-20.
45. Tulppo MP, Kiviniemi AM, Hautala AJ, Kallio M, Seppanen T, Mäkikallio TH, Huikuri HV. Physiological background of the loss of fractal heart rate dynamics. Circulation 2005;112:314-319.
46. Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS, eds. Dynamical Systems and Turbulence, Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1981:366-381.
47. Albano AM, Muench J, Schwartz C, Mees AI, Rapp PE. Singular-value decomposition and the Grassberger-Procaccia algorithm. Phys Rev A 1988;38:3017-3026.
48. Iyengar N, Peng C-K, Morin R, Goldberger AL, Lipsitz LA. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol Regulatory Integrative Comp Physiol 1996;271:R1078-R1084.
49. Mäkikallio TH, Seppanen T, Airaksinen KE, Koistinen J, Tulppo MP, Peng C-K, Goldberger AL, Huikuri HV. Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. Am J Cardiol 1997;80:779-783.
50. Henry B, Lovell N, Camacho F. Nonlinear dynamics time series analysis. In: Akay M, ed. Nonlinear Biomedical Signal Processing: Volume II, Dynamic Analysis and Modeling. New York: IEEE Press, 2000:1-39.
51. Pomeranz B, Macaulay RJB, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, Benson H. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol Heart Circ Physiol 1985;248:H151-H153.
52. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991;84:482-492.
53. Appel ML, Berger RD, Saul JP, Smith JM, Cohen RJ. Beat to beat variability in cardiovascular variables: noise or music? J Am Coll Cardiol 1989;14:1139-1148.
54. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 1994;90:1826-1831.
55. Fleisher LA, Frank SM, Sessler DI, Cheng C, Matsukawa T, Vannier CA. Thermoregulation and heart rate variability. Clin Sci (Lond) 1996;90:97-103.
56. Bonaduce D, Marciano F, Petretta M, Migaux ML, Morgano G, Bianchi V, Salemme L, Valva G, Condorelli M. Effects of converting enzyme inhibition on heart period variability in patients with acute myocardial infarction. Circulation 1994;90:108-113.
57. Maciel BC, Gallo L, Jr., Marin Neto JA, Maciel LM, Martins LE. Autonomic control of heart rate during dynamic exercise in human hyperthyroidism. Clin Sci (Lond) 1988;75:209-215.
58. Kollai B, Kollai M. Reduced cardiac vagal excitability in hyperthyroidism. Brain Res Bull 1988;20:785-790.
59. Inukai T, Kobayashi I, Kobayashi T, Ishii A, Yamaguchi T, Yamaguchi Y, Iwashita A, Shimomura Y, Kobayashi S. Parasympathetic nervous system in patients with Graves' disease determined by R-R interval variations on electrocardiogram. Exp Clin Endocrinol 1990;96:289-295.
60. Bigger JT, Jr , Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 1992;85:164-171.
61. Bigger JT, Jr., Fleiss JL, Rolnitzky LM, Steinman RC. Frequency domain measures of heart period variability to assess risk late after myocardial infarction. J Am Coll Cardiol 1993;21:729-736.
62. Franklyn JA, Maisonneuve P, Sheppard MC, Betteridge J, Boyle P. Mortality after the treatment of hyperthyroidism with radioactive iodine. N Engl J Med 1998;338:712-718.
63. Franklyn JA, Sheppard MC, Maisonneuve P. Thyroid function and mortality in patients treated for hyperthyroidism. JAMA 2005;294:71-80.
64. Guzzetti S, Signorini MG, Cogliati C, Mezzetti S, Porta A, Cerutti S, Malliani A. Non-linear dynamics and chaotic indices in heart rate variability of normal subjects and heart-transplanted patients. Cardiovasc Res 1996;31:441-446.
65. Nikolopoulos S, Alexandridi A, Nikolakeas S, Manis G. Experimental analysis of heart rate variability of long-recording electrocardiograms in normal subjects and patients with coronary artery disease and normal left ventricular function. J Biomed Inform 2003;36:202-217.
66. Carvajal R, Wessel N, Vallverdu M, Caminal P, Voss A. Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy. Comput Methods Programs Biomed 2005;78:133-140.
67. Bogaert C, Beckers F, Ramaekers D, Aubert AE. Analysis of heart rate variability with correlation dimension method in a normal population and in heart transplant patients. Auton Neurosci 2001;90:142-147.
68. Vikman S, Mäkikallio TH, Yli-Mäyry S, Pikkujämsä S, Koivisto AM, Reinikainen P, Airaksinen KE, Huikuri HV. Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation. Circulation 1999;100:2079-2084.
69. Mäkikallio TH, Koistinen J, Jordaens L, Tulppo MP, Wood N, Golosarsky B, Peng C-K, Goldberger AL, Huikuri HV. Heart rate dynamics before spontaneous onset of ventricular fibrillation in patients with healed myocardial infarcts. Am J Cardiol 1999;83:880-884.
70. Klein I, Danzi S. Thyroid disease and the heart. Circulation 2007;116:1725-1735.
71. Auer J, Scheibner P, Mische T, Langsteger W, Eber O, Eber B. Subclinical hyperthyroidism as a risk factor for atrial fibrillation. Am Heart J 2001;142:838-842.
72. Frost L, Vestergaard P, Mosekilde L. Hyperthyroidism and risk of atrial fibrillation or flutter: a population-based study. Arch Intern Med 2004;164:1675-1678.
73. Osman F, Franklyn JA, Holder RL, Sheppard MC, Gammage MD. Cardiovascular manifestations of hyperthyroidism before and after antithyroid therapy: a matched case-control study. J Am Coll Cardiol 2007;49:71-81.
74. Sun ZQ, Ojamaa K, Coetzee WA, Artman M, Klein I. Effects of thyroid hormone on action potential and repolarizing currents in rat ventricular myocytes. Am J Physiol Endocrinol Metab 2000;278:E302-E307.
75. Coumel P. Autonomic influences in atrial tachyarrhythmias. J Cardiovasc Electrophysiol 1996;7:999-1007.
76. Huang J-L, Wen Z-C, Lee W-L, Chang M-S, Chen S-A. Changes of autonomic tone before the onset of paroxysmal atrial fibrillation. Int J Cardiol 1998;66:275-283.
77. Dimmer C, Tavernier R, Gjorgov N, Van Nooten G, Clement DL, Jordaens L. Variations of autonomic tone preceding onset of atrial fibrillation after coronary artery bypass grafting. Am J Cardiol 1998;82:22-25.
78. Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation 2002;105:2753-2759.
79. Lombardi F, Tarricone D, Tundo F, Colombo F, Belletti S, Fiorentini C. Autonomic nervous system and paroxysmal atrial fibrillation: a study based on the analysis of RR interval changes before, during and after paroxysmal atrial fibrillation. Eur Heart J 2004;25:1242-1248.
80. Tulppo MP, Hughson RL, Mäkikallio TH, Airaksinen KE, Seppanen T, Huikuri HV. Effects of exercise and passive head-up tilt on fractal and complexity properties of heart rate dynamics. Am J Physiol Heart Circ Physiol 2001;280:H1081-H1087.
81. Forfar JC, Muir AL, Sawers SA, Toft AD. Abnormal left ventricular function in hyperthyroidism: evidence for a possible reversible cardiomyopathy. N Engl J Med 1982;307:1165-1170.
82. Kahaly GJ, Kampmann C, Mohr-Kahaly S. Cardiovascular hemodynamics and exercise tolerance in thyroid disease. Thyroid 2002;12:473-481.
83. Olson BR, Klein I, Benner R, Burdett R, Trzepacz P, Levey GS. Hyperthyroid myopathy and the response to treatment. Thyroid 1991;1:137-141.
84. Chen Z, Ivanov P, Hu K, Stanley HE. Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E Stat Nonlin Soft Matter Phys 2002;65:041107.
85. Beckers F, Verheyden B, Aubert AE. Aging and nonlinear heart rate control in a healthy population. Am J Physiol Heart Circ Physiol 2006;290:H2560-H2570.
86. Willson K, Francis DP. A direct analytical demonstration of the essential equivalence of detrended fluctuation analysis and spectral analysis of RR interval variability. Physiol Meas 2003;24:N1-N7.
87. Lombardi F, Mäkikallio TH, Myerburg RJ, Huikuri HV. Sudden cardiac death: role of heart rate variability to identify patients at risk. Cardiovasc Res 2001;50:210-217.
88. Merati G, Di Rienzo M, Parati G, Veicsteinas A, Castiglioni P. Assessment of the autonomic control of heart rate variability in healthy and spinal-cord injured subjects: contribution of different complexity-based estimators. IEEE Trans Biomed Eng 2006;53:43-52.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 蛋白質激酶Maternal embryonic leucine zipper kinase肝癌細胞存活的重要分子
2. 狼瘡抗雙股DNA抗體進入細胞的分子機制及對免疫細胞的影響
3. 不動桿菌屬genomicspecies2之外膜蛋白與genomicspecies3和13TU之carbapenemase在imipenem抗藥所扮演的角色
4. 東南亞跨國婚姻女性的生活事件壓力與憂鬱程度之探討-以台灣新竹地區為例
5. 股骨髓腔幾何形狀、骨密度與股骨柄外型對股骨近端應力與股骨柄穩定度之影響
6. 重覆透顱磁刺激對憂鬱症患者療效的預測因子探討
7. 探討整合蛋白(integrinaIIbb3)與Na+-H+交換體(NHE1)及Ca2+-Na+交換體(NCX1)間產生交互作用後觸發細胞內鈣離子波動之作用機轉
8. 探討P2X7受器相關及非相關機制對於Neuro-2a神經母細胞瘤的細胞存活的調控
9. 史帝文生強生症候群和毒性表皮溶解症的基因體學及免疫學研究
10. 薰衣草、茉莉、洋甘菊、檀香或佛手柑精油吸入性芳香療法對心率變異度的影響
11. 台灣甲狀腺機能亢進症之流行病學研究
12. 十二小時超級馬拉松運動員比賽中之尿量及成績相關性分析
13. 大腸直腸外科術後重症病人使用經靜脈嗎啡自控式止痛裝置中加入ketorolac對於腸道功能恢復影響及相關性之研究
14. 應用類神經網路及整體學習獨立成分分析法提升小動物正子斷層影像之定量準確性
15. 呼吸運動對心臟灌注單光子斷層掃描的影響