跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴玉樹
研究生(外文):Yu-Shu Lai
論文名稱:股骨髓腔幾何形狀、骨密度與股骨柄外型對股骨近端應力與股骨柄穩定度之影響
論文名稱(外文):The effects of femoral canal geometries, bone densities and stem shapes on the stresses of proximal femur and stability of femoral stem
指導教授:鄭誠功鄭誠功引用關係
指導教授(外文):Cheng-Kung Cheng
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:102
中文關鍵詞:人工髖關節置換煙囪型骨髓腔股骨球頭缺血性壞死
外文關鍵詞:total hip replacementstovepipe canal shapeavascular necrosis of the femoral head
相關次數:
  • 被引用被引用:2
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
全人工髖關節置換術為近代治療嚴重髖關節疾病的有效手術。近年來全人工髖關節置換術十年內的存活率通常可達到九成以上。不過術後的存活率往往會因為病患的年齡、性別與疾病等不同因素而有產生差異。然而導致全人工髖關節股骨柄失敗而必須施行再置換手術的原因,絕大部分為股骨柄無菌性鬆脫所引起。臨床上發現老化所造成的近端股骨髓腔骨質流失,使得髓腔形狀由倒香檳型變為煙囪型是導致骨水泥式股骨柄鬆脫的主因。在亞洲,因為藥物或基因的因素使得年輕人罹患高的股骨頭缺血性壞死症,會導致鬆質骨骨密度下降,這被認為是引起非骨水泥式股骨柄鬆脫的原因。目前市面上有許多外型不同的股骨柄,但是尚未有一種人工股骨柄能夠完全克服上述鬆脫的問題。因此,本研究將利用有限元素法模擬不同的股骨髓腔幾何形狀、骨密度與股骨柄外型對股骨近端應力與股骨柄穩定度之影響。本研究結果也將提供醫師在針對罹患股骨頭缺血性壞死的年輕患者與退化性關節炎的老年患者進行全人工髖關節手術前挑選股骨柄的參考。
本研究在骨水泥式模型部分,建立2組正常髓腔形狀之股骨模型並且分別植入Omnifit (high flare)與Charnley (low flare)骨水泥式股骨柄以及2組煙囪型髓腔之股骨模型分別植入Omnifit與Charnley骨水泥式股骨柄,並且以骨水泥所受之最大主應力值作為評估股骨柄是否鬆脫的標準。在非骨水泥式模型部分,建立2組非骨水泥式股柄置換模型,取正常髓腔股骨模型分別植入VerSys(直柄)與ABG(解剖柄)非骨水泥式股骨柄,並且以股骨柄與骨間的微動量值作為評估股骨柄是否鬆脫的標準。上述模型均利用有限元素分析軟體ANSYS模擬人步態時髖關節的受力狀態,並且改變股骨楊氏模數以模擬不同骨密度情況,以瞭解股骨柄的穩定度與股骨應力分佈狀態。
在骨水泥式模型部分之有限元素分析結果發現股骨髓內腔為煙囪型並植入Charnley骨水泥式股骨柄的模型,其骨水泥所受的最大主應力(73.5 MPa)與達到足以導致骨水泥破壞的體積百分比(8.2%)均較股骨髓內腔為正常型的模型高(23.3 MPa與1.7%)。若改為植入Omnifit骨水泥式股骨柄,則股骨髓內腔為煙囪型的模型其骨水泥所受的最大主應力(32.8 MPa)與骨水泥破壞體積百分比(4.9%)均會比植入Charnley股骨柄低;股骨髓內腔為正常型的模型若改為植入Omnifit骨水泥式股骨柄,也會比植入Charnley股骨柄低(15 MPa與0.26%)。當骨密度下降時(楊氏模數下降),所有模型的最大主應力與骨水泥破壞體積百分比也隨之增加。其中以股骨髓內腔為煙囪型的模型增加幅度最大,分別由2.8%(Omnifit股骨柄)與8.3%(Charnley股骨柄)增加至9.8%與16%。
在非骨水泥式模型之股骨柄穩定度有限元素分析結果發現,股骨植入直柄式股骨柄之模型,其骨與股骨柄間微動量最大值為135.7 μm,超過150 μm的接觸面積為0%;植入解剖式股骨柄其微動量最大值為199.25 μm,超過150 μm的接觸面積為2.2%。當股骨鬆質骨楊氏模數由100%下降至50%,植入直柄式股骨柄模型其微動量最大值上升為165.94 μm,接觸面積微動量超過150 μm增至0.2%;植入解剖式股骨柄之模型其接觸面微動量最大值增加為225.68μm,接觸面積微動量超過150 μm增至4.27%。股骨內側硬質骨表面von Mises應力顯示:植入直柄與解剖柄之股骨近端的von Mises應力分佈相似。但是,於距離近端股骨20 mm處之應力,解剖柄模型高於直柄模型10 MPa;於距離近端股骨60 mm處,直柄模型又高於解剖模型12 MPa。
本研究建議在施行骨水泥式股骨柄時,應該考慮病患股骨髓腔形狀與骨質,若屬煙囪型或骨質不佳應採用high flare外型的股骨柄。因為煙囪型股骨在股骨柄植入後,會造成股骨柄遠端骨水泥厚度比股骨柄近端的骨水泥厚,使得股骨柄遠端的骨水泥與硬質骨整體勁度下降。當股骨受載重時,該處所受的應力值會上升,增加骨水泥破壞的機率。採用high flare外型的股骨柄能降低骨水泥遠端應力。在施行非骨水泥式股骨柄部分,由於解剖型股骨柄是利用與股骨近端鬆質骨緊配為固定方式,而直柄型為緊配骨峽處硬質骨。因此,非創傷性股骨頭缺血性壞死病患因為鬆質骨的骨質不佳,若植入解剖型股骨柄容易導致股骨近端鬆質骨無法承受載重,引起股骨柄與骨間交界面的微動量超過骨生長臨界值。建議應採用直柄型非骨水泥式股骨柄,而避免使用解剖型非骨水泥式股骨柄。
Total hip arthroplasty is a successful surgery that fails at a rate of approximately 10% at ten years from surgery. Revision reasons varied according to the age, gender and diseases etc. Aseptic loosening of the femoral component is the main reason leading to femoral stem revised. Stovepipe canal shape which caused by aging is the main factor leading to aseptic loosening of cemented femoral component. Avascular necrosis of the femoral head is the main indication for total hip replacement in Asia. It decreased the density of cancellous bone and is considered as the main factor leading to aseptic loosening of cementless femoral component. There were many designs of femoral stem but can not avoid the aseptic loosening. The purpose of this study was, therefore, to find out the effects of femoral canal geometries, bone densities and stem shapes on the stresses of proximal femur and stability of femoral stem using finite element method. We expected that the results could provide suggestions for surgeons to select a femoral stem in patients with avascular necrosis of the femoral head or stovepipe canal before total hip arthroplasty.
Four finite element models of proximal femurs including normal and stovepipe femoral canal shapes were used to predict the failure of cement mantles for different stem shapes (Omnifit and Charnley cemented stem) and Young’s modulus of bone. Furthermore, two finite element models of proximal femur (normal canal shape) were used to evaluate the stability and stresses distribution of cementless femoral stem for different designs (VerSys and ABG) and Young’s modulus of cancellous bone. All models were simulated the loading of hip joint during heel strike of the gait cycle using the finite element analysis software (ANSYS 7.0).
The results on cemented stem analysis showed that high failure volume of cement mantle (8.2%) and tensile stress (73.5 MPa) occurred in the cement mantle of the stovepipe canal model with a low flare sem (Charnley) as compared with normal canal model (1.7% and 23.3 MPa). A high flare stem (Omnifit) reduced the peak stress and failure volume of the cement mantle not only in the stovepipe canal model but also in the normal canal model. Moreover, the peak stress and probability-of-failure of the cement mantle were sensitively with the decrease of bone density (Young’s modulus) in the stovepipe canal models. The results on cementless stem analysis showed that in the model with VerSys stem (Straight type), the peak micromotion between bone and stem was 135.7μm, and 0% of contact area at the bone/stem interface exceeded 150μm. In the model with ABG stem (Anatomic type), the peak micromotion between bone and stem was 199.25μm, and 2.2% of contact area at the bone/stem interface exceeded 150μm. The peak micromotion at the bone/stem interface was increased when the cancellous bone quality (Young’s modulus) was decreased whether implant with straight or anatomic stem. The peak micromotion was lower in the model with straight stem when decreased the modulus of cancellous bone as compared with the model with anatomic stem.
We concluded that the femoral canal shape and bone quality of patients should be considered before hip replacement surgery. A high flare, cemented femoral stem decreased the stress in the cement mantle around the stem tip. It should be considered as a better type of femoral prosthesis for patients with stovepipe canal shape or inferior bone quality. Because the cement mantle around the stem tip is thicker than proximal due to the wide isthmus of stovepipe canal after implanted a regular cemented stem. It decreased the stiffness of femur model at the region of stem tip and then increased the stress in distal cement mantle when loading occured. For young, non-trauma avascular necrosis of the femoral head patients, a cementless, straight stem which fill the isthmus is better than anatomic stem which fill the proximal part of the canal only. Because the weak cancellous bone can not resist the loading from the anatomic stem and increased the micromotion at stem/bone interface.
目錄
中文摘要 I
Abstract III
目錄 V
圖目錄 X
表目錄 XIV
第一章 前言 1
1-1 髖關節的組成與構造 1
1-2 股骨的解剖構造 4
1-3 髖關節的病變與處理方式 7
1-3.1 置換人工髖關節的常見疾病 7
1-3.2 老化對於近端股骨的影響 8
1-3.3 股骨球缺血性壞死對近端股骨的影響 11
1-4 人工髖關節簡介 12
1-4.1 骨水泥式股骨柄簡介 16
1-4.2 非骨水泥式股骨柄簡介 17
1-5 人工髖關節股骨柄的臨床問題 19
1-5.1 骨水泥式股骨柄的無菌鬆脫 19
1-5.2 非骨水泥式股骨柄的無菌鬆脫 21
1-6 人工髖關節股骨柄之有限元素分析研究回顧 23
1-6.1 以有限元素法評估骨水泥破壞應力 24
1-6.2 以有限元素法評估骨與股骨柄間的微動量 25
1-7 研究動機 26
1-8 研究目的 27
第二章 材料與方法 28
2-1 人工髖關節股骨模型的建立與驗證 28
2-1.1 材料試驗機測試 28
2-1.2 有限元素模型的建立 33
2-1.3 實驗模型與有限元素結果驗證 40
2-2 有限元素分析 41
2-2.1 正常股骨之人工髖關節股骨模型 41
2-2.2 老化股骨之人工髖關節股骨模型 46
2-2.3 股骨頭缺血性壞死之人工髖關節股骨模型 46
2-3 股骨柄穩定度評估方法 47
2-3.1 骨水泥式股骨柄穩定度評估 47
2-3.2 非骨水泥式股骨柄穩定度評估 48
第三章 結果 49
3-1 人工髖關節股骨模型的驗證 49
3-2 骨水泥式人工髖關節股骨模型有限元素分析 52
3-2.1 髓腔形狀對骨水泥與股骨表面應力分佈之影響 53
3-2.2 骨密度對骨水泥應力分佈之影響 56
3-2.3 股骨柄外型對骨水泥與股骨表面應力分佈之影響 58
3-3 非骨水泥式人工髖關節股骨模型有限元素分析 59
3-3.1 股骨柄外型與海綿骨強度對股骨柄穩定度之影響 62
3-3.2 股骨柄材料與海綿骨強度對股骨柄穩定度之影響 64
3-3.3 股骨柄外型、材料與海綿骨強度對股骨應力遮蔽之影響 66
第四章 討論 69
4-1 有限元素模型的研究限制與誤差來源 69
4-1.1 股骨有限元素模型的基本假設 69
4-1.2 簡化髖關節肌群的假設 70
4-1.3 股骨、骨水泥與股骨柄之間接觸面的摩擦性質 70
4-1.4 骨水泥式股骨柄外型分類的指標 72
4-1.5 採用無頸領式股骨柄的考量 73
4-1.6 反覆載重對非骨水泥式股骨柄穩定度之影響 74
4-1.7 髖關節受力條件的假設 74
4-2 股骨表面應變規實驗結果 75
4-3 骨水泥式股骨柄模型結果討論 76
4-3.1 以應力體積與破壞機率比較模型結果 76
4-3.2 股骨近端髓腔形狀變化之影響 77
4-3.3 骨質老化對於骨水泥式股骨柄之影響 81
4-3.4骨水泥式股骨柄外型對近端股骨應力分佈之影響 81
4-3.5 股骨柄最佳化外型與本研究結果之討論 83
4-4股骨頭缺血性壞死股骨對非骨水泥式股柄穩定度之影響 85
4-4.1 微動量面積百分比 85
4-4.2 骨質對股骨柄穩定度之影響 86
4-4.3 直柄與解剖柄對股骨柄穩定度之影響 88
4-4.4 股骨柄材料對股骨柄穩定度之影響 92
第五章 結論 94
參考文獻 96
Abdul-Kadir M.R., Hansen U., Klabunde R., Lucas D., Amis A., Finite element modelling of primary hip stem stability: The effect of interference t, Journal of Biomechanics, 41:587-594, 2008.
Aamodt A., Lund-Larsen J., Eine J., Andersen E., Benum P., Husby O.S., Changes in proximal femoral strain after insertion of uncemented standard and customised femoral stems, Journal of Bone and Joint Surgery, 83B:921-929, 2001.
American Association of Orthopaedic Surgeons, Statistics: Patient Demographics. http://www.aaos.org/Research/stats/patientstats.asp, 2008.
Anthony P.P., Gie G.A., Howie C.R., Ling R.S., Localised endosteal bone lysis in relation to the femoral components of cemented total hip arthroplasties. Journal of Bone and Joint Surgery, 72B:971-979, 1990.
Archibeck M., Surdam J., Schultz S., Junick D., White R., Cementless total hip arthroplasty in patients 50 years or younger, Journal of Arthroplasty, 21:476-483, 2006.
Arlot M.E., Bonjean M., Chavassieux P.M., Meunier P.J., Bone histology in adults with aseptic necrosis. Histomorphometric evaluation of iliac biopsies in seventy-seven patients. Journal of Bone and Joint Surgery, 65A:1319-1327, 1983.
Callaghan J.J., Fulghum C.S., Glisson R.R., Stranne S.K., The effect of femoral stem geometry on interface motion in uncemented porous-coated total hip prostheses. Comparison of straight-stem and curved-stem designs, Journal of Bone and Joint Surgery, 74:839-848, 1992.
Chiu K.H., Shen W.Y., Chan K.M., Uncemented porous-coated anatomic total hip replacement in Chinese patients. International Orthopaedics, 19: 304-308, 1995.
Chiu K.Y., Ng T.P., Tang W.M., Yip D., Charnely total hip arthroplasty in Chinese patients less than 40 years old. Journal of Arthroplasty, 16: 92-101, 2001.
Crenshaw A.H., Campbell’s Operative Orthopaedics, Mosby Year Book, 1992.
Cristofolini L., Viceconti M., Cappello A., Toni A., Mechanical validation of whole bone composite femur models, Journal of Biomechanics, 29:525-535, 1996.
Decking R., Puhl W., Simon U., Claes L.E., Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems, Clinical Biomechanics, 21:495-501, 2006.
Ding M., Dalstra M., Danielsen C.C., Kabel J., Hvid I., Linde F., Age variations in the properties of human tibial trabecular bone. Journal of Bone and Joint Surgery, 79B:995-1002, 1997.
Ding M., Danielsen C.C., Hvid I., Bone density does not reflect mechanical properties in early-stage arthrosis, Acta Orthopaedica Scandinavica, 72:181-185, 2001.
Duchemin L., Bousson V., Raossanaly C., Bergot C., Laredo J.D., Skalli W., Mitton D., Prediction of mechanical properties of cortical bone by quantitative computed tomography, Medical Engineering and Physics, 30:321-328, 2008.
Ebramzadeh E., Sarmiento A., McKellop H.A., Llinas A., Gogan W., The cement mantle in total hip arthroplasty. Analysis of long-term radiographic results, Journal of Bone and Joint Surgery, 76A:77-87, 1994.
Goldring S.R., Clark C.R., Wright T.M., The problem in total joint arthroplasty: aseptic loosening. Journal of Bone and Joint Surgery, 75A:799-801, 1993.
Horowitz S.M., Doty S.B., Lane J.M., Burstein A.H., Studies of the mechanism by which the mechanical failure of polymethylmethacrylate leads to bone resorption. Journal of Bone and Joint Surgery, 75A:802-13, 1993.
Howard J.L., Hui A.J., Bourne R.B., McCalden R.W., MacDonald S.J., Rorabeck C.H., A quantitative analysis of bone support comparing cementless tapered and distal fixation total hip replacements, Journal of Arthroplasty, 19:266-273, 2004.
Huiskes R., Verdonschot N., Nivbrant B., Migration, stem shape, and surface finish in cemented total hip arthroplasty. Clinical Orthopaedics and Related Research, 355:103-112, 1998.
Huiskes, R., Weinans H., Rietbergen B.V., The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials, Clinical Orthopaedics and Related Research, 274:124-134, 1992.
Keaveny T.M., Bartel D.L., Effects of porous coating, with and without collar support, on early relative motion for a cementless hip prosthesis, Journal of Biomechanics. 26:1355-68, 1993.
Kim Y.H., Kim J.S., Yoon S.H., Long-term survivorship of the Charnley Elite Plus femoral component in young patients. Journal of Bone and Joint Surgery, 89B:449-454, 2007.
Kobayashi S., Takaoka K., Saito N., Hisa K., Factors affecting aseptic failure of fixation after primary Charnley total hip arthroplasty. Multivariate survival analysis. Journal of Bone and Joint Surgery, 79A:1618-1627, 1997.
Krischak G.D., Wachter N.J., Zabel T., Suger G., Beck A., Kinzl L., Claes L.E., Augat P., Influence of preoperative mechanical bone quality and bone mineral density on aseptic loosening of total hip arthroplasty after seven years, Clinical Biomechanics, 18:916-923, 2003.
Lai Y.S., Wei H.W., Cheng C.K., Incidence of hip replacement among National Health Insurance enrollees in Taiwan. Journal of Orthopaedic Surgery and Research, 3:42, 2008.
Laine H.J., Puolakka1 T.J.S., Moilanen T., Pajamäki K.J., Wirta J., Lehto M.U.K., The effects of cementless femoral stem shape and proximal surface texture on ’fit-and-fill’ characteristics and on bone remodeling, International Orthopaedics, 24:184-190, 2000.
Lennon A.B. and Prendergast P.J., Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants. ASME Journal of Biomechanical Engineering, 123:623-628, 2001.
Lombardi A.V., Mallory T.H., Vaughn B.K., Drouillard P., Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. Journal of Bone and Joint Surgery, 71A:1337-1342, 1989.
Malchau H., Herberts P., Eisler T., Garellick G., Soderman P., The Swedish Total Hip Replacement Register. Journal of Bone and Joint Surgery, 84A:2-20, 2002.
Mann K.A., Bartel D.L., Wright T.M., Burstein A.H., Coulomb frictional interfaces in modeling cemented total hip replacements: a more realistic model. Journal of Biomechanics, 28:1067-1078, 1995
Mann K.A., Bartel D.L., Ayers D.C., Influence of Stem Geometry on Mechanics of Cemented Femoral Hip Components with a Proximal Bond. Journal of Orthopaedic Research, 15:700-706, 1997.
Meding J.B, Ritter M.A, Keating E.M, Faris P.M., Comparison of collared and collarless femoral components in primary uncemented total hip arthroplasty, Journal of Arthroplasty, 12:273-280, 1997.
Meding J.B., Ritter M.A., Keating E.M., Faris P.M., Edmondson K., A comparison of collared and collarless femoral components in primary cemented total hip arthroplasty, Journal of Arthroplasty, 14:123-130, 1999.
Mont M.A. and Hungerford D.S., Non-traumatic avascular necrosis of the femoral head. Journal of Bone and Joint Surgery, 77A:459-474, 1995.
Murphy B.P., Prendergast P.J., On the magnitude and variability of the fatigue strength of acrylic bone cement. International Journal of Fatigue, 22:855-864, 2000.
Nazarian A., Muller J., Zurakowski D., Muller R., Snyder B.D., Densitometric, morphometric and mechanical distributions in the human proximal femur, Journal of Biomechanics, 40:2573-2579, 2007.
Noble, P.C., Alexander, J.W., Lindahl, L.J., Yew, D.T., Granberry, W.M., Tullos, H.S., The anatomic basis of femoral component design. Clinical Orthopaedics and Related Research, 235:148-65, 1998.
Noble P.C., Box G.G., Kamaric E., Fink M.J., Alexander J.W., Tullos H.S., The effect of aging on the shape of the proximal femur. Clinical Orthopaedics and Related Research, 316:31-44, 1995.
Oh I. and Harris W.H., Proximal strain distribution in the loaded femur. An in vitro comparison of the distributions in the intact femur and after insertion of different hip-replacement femoral components. Journal of Bone and Joint Surgery, 60A:75-85, 1978.
Pancanti A., Bernakiewicz M., Viceconti M., The primary stability of a cementless stem varies between subjects as much as between activities. Journal of Biomechanics, 36:777-785, 2003.
Parvizi J., Sharkey P.F., Bissett G.A., Rothman R.H., Hozack W.J., Surgical treatment of limb-length discrepancy following total hip arthroplasty, Journal of Bone and Joint Surgery, 85A:2310-2317, 2003.
Radl R., Egner S., Hungerford M., Rehak P., Windhager R., Survival of cementless femoral components after osteonecrosis of the femoral head with different etiologies. Journal of Arthroplasty, 20:509-515, 2005.
Ramamurti B.S., Orr T.E., Bragdon C.R., Lowenstein J.D., Jasty M., Harris W.H., Factors influencing stability at the interface between a porous surface and cancellous bone: a finite element analysis of a canine in vivo micromotion experiment. Journal of Biomedical Materials Research, 36:274-80,1997.
Ramaninaka N.A., Rakotomanana L.R., Leyvraz P.F., The fixation of the cemented femoral component: Effects of stem stiffness, cement thickness and roughness of the cement-bone surface. Journal of Bone and Joint Surgery, 82B:297-303, 2000.
Rasquinha V.J., Dua V., Rodriguez J.A., Ranawat C.S., Fifteen-year survivorship of a collarless, cemented, normalized femoral stem in primary hybrid total hip arthroplasty with a modified third-generation cement technique, Journal of Arthroplasty, 18:86-94, 2003.
Romero F., Amirouche F., Aram L., Gonzalez, M.H., Experimental and analytical validation of a modular acetabular prosthesis in total hip arthroplasty. Journal of Orthopaedic Surgery and Research, 2:7, 2007.
Sakai R., Itoman M., Mabuchi K., Assessments of different kinds of stems by experiments and FEM analysis: Appropriate stress distributionon a hip prosthesis. Clinical Biomechanics, 21:826-833, 2006.
Schmalzried T.P., Jasty M., Harris W.H., Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. Journal of Bone and Joint Surgery, 74A:849-863, 1992.
Stolk J., Verdonschot N., Cristofolini L., Toni A., Huiskes R., Finite element and experimental models of cemented hip joint reconstructions can produce similar bone and cement strains in pre-clinical tests. Journal of Biomechanics, 35:499-510, 2002.
Szmukler-Moncler S., Salama H., Reingewirtz Y., Dubrille J.H., Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. Journal of Biomedical Materials Research, 43:192-203, 1998.
Tanino H., Ito H., Higa M., Omizu N., Nishimura I., Matsuda K., Mitamura Y., Matsuno T., Three-dimensional computer-aided design based design sensitivity analysis and shape optimization of the stem using adaptive p-method, Journal of Biomechanics, 39:1948-1953, 2006.
Verdonschot N., Huiskes R., Acrylic cement creeps but does not allow much subsidence of femoral stems. Journal of Bone and Joint Surgery, 79B:665-669, 1997.
Viceconti M., Muccini R., Bernakiewicz M., Baleani M., Cristofolini, L., Large-sliding contact elements accurately predict levels of bone–implant micromotion relevant to osseointegration. Journal of Biomechanics, 33:1611–1618, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top