跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭嘉旭
研究生(外文):Chia-Hsu Kuo
論文名稱:前十字韌帶強度對半月軟骨應力分布於跳躍落地的影響
論文名稱(外文):Effect of ACL Strength on Stress Distribution of Meniscus when Landing from a Jump
指導教授:楊世偉楊世偉引用關係
指導教授(外文):Sai-Wei Yang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:79
中文關鍵詞:膝關節半月軟骨前十字韌帶動態有限元素分析
外文關鍵詞:knee jointmeniscusACLdynamic finite element analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
膝關節於屈曲伸直及前後滑動時半月軟骨扮演很重要的承接角色,而前十字韌帶則提供膝關節的穩定度。由於膝蓋彎曲時脛骨前向移位,時前十字韌帶為主要受力韌帶;前十字韌帶的扭傷,不但影響膝關節的活動度,也對半月軟骨受力造成影響,本研究的目的主要在探討前十字韌帶強度改變對半月軟骨承受的力學影響。
本實驗以醫學影像(MRI)重建正常膝關節三維模型,匯入動態有限元軟體(LS-DYNA),並使用測力板(AMTI)與動作分析儀器(VICON)做為實際跳躍落地時膝關節之活動度,控制膝關節肌肉強度以為模擬時的輸入條件及模型驗證。將十字韌帶的勁度由100%, 80%,50%,0%遞減以探討膝關節活動度及半月軟骨應力分佈情形。
結果顯示落地模擬時,膝關節多為內轉、外翻,因此韌帶主要受力為前十字韌帶與內側韌帶且前十字韌帶受力高出其餘韌帶,脛骨與股骨之間相對位移高於半靜態與靜態有限元素結果。正常人之半月軟骨的蒙摩麥斯應力(Von Mises stress)值約在4~8Mpa,且內外側應力均佈;當前十字韌帶勁度減少時導致膝關節落地時造成股骨脛骨間前向位移增大, 有較多的外翻與內轉; 內側韌帶受力增大,外側韌帶受力並無改變,進而使半月軟骨的應力分佈主要移至外側。當前十字韌帶完全拉斷時時,作用在半月軟骨的最大蒙摩麥斯應力集中於外側半月軟骨的後側部分,其值為44.6Mpa,內側半月軟骨則減少為0.8Mpa。改變前十字韌帶勁度(100%、80%、50%)發現韌帶勁度越低,膝關節受力越偏向外側,並在0%時,外側後面半月軟骨應力集中造成形變過大可能造成半月軟骨的破裂。因此,前十字韌帶強度減弱容易造成外側半月軟骨後側部分產生高應力而造成傷害。
The function of anterior cruciate ligament (ACL) is to prevent the anterior motion of knee joint and to control the normal rolling as well as gliding movement of the knee. It is easier to injure when landing from a jump. The meniscus plays important role in stress redistribution during weight bearing activities of lower extremity motion. The purpose of this study was to investigate how the injured ACL altered the weight bearing posture of lower limb and resulted in rupture of meniscus in simulation of basketball jumping.
The Knee joint FEM model was generated from a series of MRI images scanned from a 24 years of male, then analyzed using a dynamic finite element software (LS-DYNA). The input condition of applied segmental force, muscle forces, as well as joint motion were obtained from the inverse kinematics of basket ball simulation using a force plate (AMTI) and motion analysis system (VICON). After validated the model, the simulations were carried in four ACL strength conditions 100%, 80%, 50%,0%.
The results showed that when landing from vertical jump The knee joint performed internal rotation and valgus. ACL and MCL were major acting ligaments to stabilize the joint capsule. The 100% ACL strength had the von Misses stress of 4-8Mpa normal distributed on meniscuses. When ACL strength decreased, the joint moved forward profoundly, which resulted in more internal rotation and knee valgus, as well as increased the load on MCL. The weight bearing stress moved to lateral meniscus. When the ACL was ruptured (0% strength) the lateral meniscus had the maximum von Misses stress of 44.6Mpajacting on posterior region, the medial meniscus took only 0.8 Mpa stress. Changing the ACL strength will result in the knee weight bearing shift laterally and increases the load on the lateral meniscus, and causes the meniscus damage.
目錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VII

第一章 緒論 1
1-1 研究背景 1
1-2 膝關節解剖與生理 2
1-2-1膝關節韌帶
3
1-2-2膝之半月板 4
1-2-3肌肉 5
1-2-4 膝關節運動學 5
1-3落地傷害 6
1-4前十字韌帶傷害機轉 6
1-5 文獻回顧 9
1-5-1死體實驗 9
1-5-2人體實驗 10
1-5-3膝關節數值模擬 13
1-6研究目的 19
第二章 材料與方法 20
2-1跳躍落地實驗 20
2-1-1實驗儀器與設備 21
2-2 有限元模型概說 23
2-2-1 實體模型建立 24
2-2-2 有限元素模型建立 26
2-2-3有限元模型材料性質 27
2-2-4有限元素模型邊界條件設定 31
2-2-5有限元素模型運算 35
2-3逆運動力學 35
2-3-1下肢模型 35
2-3-2膝關節肌肉位置 37
2-3-3圓柱體纏繞公式 38
2-3-4球體纏繞公式 39
2-3-5膝關節肌力分析 41
第三章 結果 44
3-1下肢落地實驗 44
3-2模型驗證 46
3-3韌帶受力 56
3-4半月軟骨應力分布 62
3-5膝關節的運動量 66
第四章 討論 71
4-1下肢落地實驗及誤差來源 71
4-2模型的假設與限制及誤差來源 72
4-3前十字韌帶勁度對半月軟骨影響
74
第五章 結論 75

參考文獻 77
參考文獻
• Amis AA, Bull AM, Gupte CM, Hijazi I, Race A, Robinson JR., (2003)” Biomechanics of the PCL and related structures: posterolateral, posteromedial and meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc. 11(5):271-81.
• Bendjaballah MZ., Shirazi-Adl A., Zukor DJ., (1995) “Biomechanics of the human knee joint in compression :reconstruction, mesh generation and finite element analysis” Knee. 2(2):69-79.
• Bispo RZ., Kawano CT., Guedes AV., (2008) ”Chronic multiple knee ligament injuries: epidemiological analysis of more than one hundred cases.” Clinics. 63(1):3-8.
• David J. Magee.(2006) “Knee. Orthopedic Physical Assessment.” 4rd Ed.
• Decker MJ., Torry MR., Noonan TJ., Riviere A., Sterett WI., (2002) ” Landing adaptations after ACL reconstruction.” Med. Sci. Sports Exerc. 34(9):1408-13.
• Defrate LE., Papannagari R., Gill TJ., Moses JM., Pathare NP., Li G., (2006)”The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis.” Am. J. Sports Med. 34(8):1240-1246.
• Fujie H., Mabuchi K., (1993) “The use of robotics technology to study human joint kinematics:a new methodology” J. Biomech. Eng. 115(3):211-7.
• Gefen, A., Megido-Ravid, M., Itzchak, Y., Arcan, M., (2000)” Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications.” J. Biomech. Eng. 122, 630-639.
• Guoan L., Jeremy S., Thomas G., (2002) ”The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation” Ann. Biomed. Eng. 30: 713-720.
• Hoy MG, Zajac FE, Gordon ME., (1990)” A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J Biomech. 23(2):157-69.
• Lin HT., Nakamura Y., Su FC., Hashimoto J., Nobuhara K., Chao EY., (2005)” Use of virtual, interactive, musculoskeletal system (VIMS) in modeling and analysis of shoulder throwing activity.” J. Biomech. Eng. 127(3):525-30.
• McNitt-Gray JL., (1993)” Kinetics of the lower extremities during drop landings from three heights.” J. Biomech. 26, 1037-1046.
• Noyes FR., (1977)” Functional properties of knee ligaments and alterations induced by immobillization.” Clin. Orthop. 123:210.
• Papageorgiou CD., Gil JE., Kanamori A., Fenwick JA., Woo SL., Fu FH., (2001) ‘The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus.” Am. J. Sports Med. 29(2):226-31.
• Schmiedmayer HB., Lugner P., Gaudernak T., (1996)” A mathematical model of human joints including menisci.” Computer Methods in biomechanics & biomedical engineering. 251-259.
• Shelburne KB., Pandy MG., (1998)” Determinants of cruciate-ligament loading during rehabilitation exercise.” Clin. Biomech. 13:403-413.
• St�黷bli HU., Schatzmann L., Brunner P., Rinc�曝 L., Nolte LP., (1999)” Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults.” Am. J. Sports Med. 27(1):27-34.
• Stevens KJ., Dragoo JL., (2006)”Anterior Cruciate Ligament Tears and Associated Injuries” Top Magn Reson Imaging ;17:347-362
• Toritsuka Y., Horibe S., Hiro-Oka A., (1999)’Knee dislocation following anterior cruciate ligament disruption without any other ligament tear’ Arthroscopy. 15(5) :522-526.
• Uhorchak JM., St. Pierre P., DeWitt DO., Maloney B., Taylor D., (2000) “A prospective four-year correlation of radiographic indices and ACL injuries in an athletes college-age population.” In: Program and abstracts of the 67th annual meeting of the American Academy of Orthopaedic Surgeons; No.15.
• Williams A., Logan M.,(2004)“Understanding tibio-femoral motion.” Knee 11:81.
• Woo SL, Debski RE, Withrow JD, Janaushek MA., (1999)” Biomechanics of knee ligaments. Am J Sports Med. 27(4):533-43.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊