跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇茂源
研究生(外文):Mao-Yuan Su
論文名稱:心肌血液灌流之3T磁振造影研究
論文名稱(外文):Study of Myocardial Perfusion at 3T MR system
指導教授:曾文毅曾文毅引用關係朱唯勤朱唯勤引用關係
指導教授(外文):Wen-Yih Isaac TsengWoei-Chyn Chu
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:99
中文關鍵詞:心肌血流灌流
外文關鍵詞:Myocardial Perfusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
心臟主要的功能在於維持全身體內血液的循環,而供應心臟本身循環的系統為冠狀動脈系統(Coronary artery system)。 當冠狀動脈因疾病,如粥樣硬化,使得血管內徑狹窄,造成供應局部心肌組織的血流降低,心肌因缺血所造成的臨床的綜合症狀,稱之為冠心症(Coronary artery disease)。 當心肌缺血的情況仍持續未能改善,則會造成心肌組織的永久性傷害,即所謂的心肌梗塞(Myocardial infarction)。

心肌血流灌注(Myocardial perfusion)的磁振造影檢查,可以用來評估局部心肌組織的血流灌流情況,利用彈丸式快速注射將對比劑打入周邊血管,並配合快速造影技術,擷取對比劑通過心肌組織的連續動態影像。 心肌血流灌注的影像分析,可以採用最簡單快速的定性方法或方法較為複雜的定量分析,但由於順磁性的對比劑會因為濃度的增加,而造成訊號飽和(saturation)的現象,使得對比劑的濃度與影像訊號呈現非線性的關係,因此,對於定量分析心肌血流灌注時, 考量對比劑的濃度與影像訊號線性關係的維持是重要且必須的。

3T磁振造影系統,除了具有高訊雜比(SNR)與比噪比(CNR)的優點外,還具有較高對比增強(contrast enhancement)的效果,然而較高的磁場不均勻度所造成的磁感性假影(susceptibility artifact) 與較高的電磁波能量存積,也使得它的臨床應用產生了限制。 為了定量分析心肌的血流灌注,我們首先測試3T磁振造影系統中對比劑的濃度與影像訊號的線性關係,並決定最佳化的對比劑濃度,再分別利用半定量與全定量方法來測量心肌血流灌注。 在本論文中,我們成功的利用3T磁振造影系統於臨床病患的檢查,利用半定量的方法區分出冠心症病患的缺血性心肌組織;並利用全定量的方法與定量心肌存活比例,間接推估心肌梗塞的病患,其心肌梗塞區中存活心肌組織的血流灌注情況;最後、進而研究復健運動,對於梗塞區中存活心肌組織血流灌注的影響。

本論文除了成功的將3T磁振造影系統應用於人類心肌血流灌注的研究,同時也建立了心肌血流灌注的正常數值,這對於臨床的預後治療評估,復健成效評估或長期追蹤,都具有可重覆性與再現性等優點。
The heart is primary responsible for the systemic circulation by pumping the blood through the vessels to the whole body. The vessels that deliver the blood to the myocardium are known as coronary artery system. Coronary artery disease (CAD) most often results from atherosclerosis which will narrow or obstruct the lumen space and reduce the blood flow to the downstream myocardium. As the degree of coronary artery disease progresses, there may be near-complete obstruction of the lumen of the coronary artery, severely restricting the blood flow to the myocardium. If this circumstance is unimproved over a period of time, it may cause a permanent damage of the myocardium as known as myocardial infarction (MI).
Magnetic resonance (MR) myocardial perfusion imaging can be used to assess the regional myocardial blood flow by bolus injection of contrast medium (CM) to the peripheral vessel. With the fast image scan technique, a series of dynamic images can be recorded during the CM pass through the myocardium. Analysis of myocardial perfusion image can be achieved by using semi-quantitative method or fully quantitative method. In semi-quantitative or quantitative analysis, adequate perfusion contrast and linearity between CM dose and signal intensity (SI) must be ensured for reliable tracer kinetic analysis.
3T MR system provides significantly higher SNR、CNR and contrast enhanced ratio (CER) compared with conventional 1.5T MR system. However, there are some disadvantages come out from higher field strengths, such as artifacts induced from the magnetic susceptibility and energy deposited in the patient’s tissue is fourfold higher at 3T than at 1.5T. In this thesis, we proposed the semi-quantitative analysis to differentiate angiographically documented ischemic myocardium from non-ischemic normal myocardium in patients with CAD. With the quantity of viable myocardium of the infarct zone, we demonstrated that the perfusion status in the residual viable myocardium can be assessed in patients post MI. To study the effects of exercise training on the myocardial perfusion post MI, MR perfusion studies were performed twice and assessed the perfusion change before and after exercise training.
In summary, we demonstrated that with standard imaging protocols, assessment of myocardial perfusion at 3T MR system is feasible and allows effective evaluation of perfusion of the residual viable myocardium, and is potentially useful to assess the effects of various interventions including different revascularization strategies, medications or exercise training in patients with prior MI.
1 Introduction
1-1 Background …………………………………………………….12
1-1-1 Coronary circulation ………………………………………13
1-1-2 Myocardial perfusion ……………………………………...14
1-1-3 Coronary artery disease (CAD) ……………………….......15
1-1-4 Myocardial infarction (MI) ………………………………..16

2 Imaging of Myocardial Perfusion
2-1 MR imaging of myocardial perfusion ………………………….18
2-1-1 The pulse sequence ………………………………………..19
2-1-2 Relation between image intensity and concentration of Gd-DTPA ………………………………………………….21
2-2 3T MR imaging of myocardial perfusion ……………………....21
2-2-1 Advantages and disadvantages ……………………………22
2-2-2 Dose optimization …………………………… ……..….…23

3 Quantification of Myocardial Perfusion
3-1 Semi-quantitative analysis……………………………………...24
3-2 Fully-quantitative analysis...…………………………………....28
3-2-1 Central volume principle ………………………………….28
3-2-2 Model-dependent analysis ………………………………...30
3-2-3 Model-independent analysis ……………………………... 32

4 Feasibility of MR-based Myocardial Perfusion Imaging at 3T
4-1 Introduction …………………………………………………….37
4-2 Materials and Methods …………………………………………38
4-2-1 Study population …………………………………………..38
4-2-2 MR protocol ……………………………………………….39
4-2-3 Dose optimization …………………………………………41
4-2-4 Coronary angiography …………………………………….42
4-2-5 Imaging analysis …………………………………………..42
4-2-6 Imaging quality assessment ……………………………….44
4-2-7 Reproducibility ……………………………………………44
4-2-8 Statistical analysis …………………………………………44
4-3 Results ………………………………………………………….45
4-3-1 Optimization of contrast medium dose ……………………45
4-3-2 Coronary angiography …………………………………….46
4-3-3 Myocardial perfusion and viability ……………………….47
4-3-4 Image quality and reproducibility ………………………...49
4-4 Discussion ………………………………………………….…..50
4-5 Conclusion ……………………………………………………..53

5 Estimation of Perfusion of Residual Viable Myocardium in Non-transmural Infarct Zone after Intervention
5-1 Introduction …………………………………………………….55
5-2 Materials and Methods …………………………………………57
5-2-1 Study population …………………………………………..57
5-2-2 MR protocol ……………………………………………….58
5-2-3 Imaging analysis …………………………………………..58
5-2-4 Statistical analysis …………………………………………62
5-3 Results ……………………………………………………...…..62
5-3-1 Patient characteristic ……………………………………....62
5-3-2 Residual viable myocardium in the infarct zone…………..63
5-3-3 Regional perfusion in chronic MI …………………………63
5-3-4 Myocardial perfusion in the residual viable myocardium…64
5-3-5 Relationships between regional perfusion in infarct region and extent of residual viable myocardium ………………...65
5-4 Discussion……………………………………………….….…..65
5-5 Study limitations ……………………………………………….67
5-6 Conclusion ……………………………………………………..69

6 Effect of exercise training in patients with stable chronic MI
6-1 Introduction ………………………………………………….…71
6-2 Materials and Methods …………………………………………72
6-2-1 Study population …………………………………………..72
6-2-2 Exercise training protocol …………………………………73
6-2-3 MR protocol ……………………………………………….73
6-2-4 Imaging analysis ...…………………………………….…..74
6-2-5 Statistical analysis …………………………………………76
6-3 Results ………………………………………………………….76
6-3-1 Patient characteristic ………………………………………76
6-3-2 Residual viable myocardium in the infarct zone ...…….….78
6-3-3 Exercise effects on myocardial perfusion in remote zone and infarct zone ………………………………………………..78
6-3-4 Correlation between viable myocardial ration and change in myocardial perfusion ……………………………………...80
6-4 Discussion………………………………………………………80
6-5 Conclusion………………………………………………………83

7 Conclusions
7-1 Discussion .……………………………………………………..84
7-2 Summary ……………………………………………………….86
7-3 Future work……………………………………………………..87

Bibliography……………………………………………………………90
1. Cerqueira MD, Weissman NJ, Dislsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002; 105:539-542.
2. Bassingthwaighte JB. Microcirculatory considerations in NMR flow imaging. Magn Reson Med 1990;14:172-178.
3. Tennant R, Wiggers CJ. The effect of coronary occlusion on myocardial contractions. Am J Physiol 1935; 112:351.
4. Osakada G, Hess OM, Gallather KP, et al. End-systolic dimension-wall thickness relations during myocardial ischemia in conscious dogs. Am J Cardiol 1983; 51:1750.
5. Reimer KA, Lowe JE, Rasmussen MM, et al. The wavefront phenomenon of ischemic cell death: myocardial infarction size vs duration of coronary occlusion in dogs. Circulation 1977, 56:786.
6. Schaper J, Schaper W. Reperfusion of ischemic myocardium: Ultra-structural and histochemical aspects. J Am Coll Cardiol 1990; 15:119.
7. Ellis SG, Henschke CI, Sandor T, et al. Time course of functional and biochemical recovery of myocardium salvage by reperfusion. J Am Coll Cardiol 1983; 1:1047.
8. Reimer KA, Jennings RB. Myocardial ischemia, hypoxia and infarction: The Heart and cardiovascular system. New York, Raven Press 1986, pp. 1133-1202.
9. Stewart RE, Miller DD, Bowers TR, McCullough PA, Ponto RA, Grines CL, O’Neill WW, Juni JE, Safian RD. PET perfusion and vasodilator function after angioplasty for acute myocardial infarction. J Nucl Med 1997;38:770-777.
10. Wilke N, Jerosch-Herold M, Stillman AE, et al. Concepts of myocardial perfusion in magnetic resonance imaging. Magn Reson Quart 1994; 10:249-286.
11. Jakob PM, Griswold MA, Edelman RR, Manning WJ, Sodickson DK. Accelerated cardiac imaging using the SMASH technique. J Cardiovasc Magn Reson 1999;1:153–157.
12. Weiger M, Pruessmann KP, Boesiger P. Cardiac real-time imaging using SENSE. SENSitivity Encoding scheme. Magn Reson Med 2000;43:177–184.
13. Nayak KS, Cunningham CH, Santos JM, et al. Real-time cardiac MRI at 3 tesla. Magn Reson Med 2004, 51:655-60.
14. Gutberlet M, Noeske R, Schwingo K, et al. Comprehensive cardiac magnetic resonance imaging at 3.0Tesla: Feasibility and Implications for clinical applications. Invest Radiol 2006, 41:154-167
15. Rinck PA, Muller RN. Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents. Eur Radiol 1999; 9(5):998–1004.
16. Araoz PA, Glockner JF, Mcgee KP, et al. 3 Tesla MR imaging provides improved contrast in first-pass myocardial perfusion imaging over a range of gadolinium doses. J Cardiovasc Magn Reson 2005;7:559-564
17. Lin C, Bernstein MA, Huston J, Fain S. Measurements of T1 relaxation times at 3T: implications for clinical MRA. Proc Int Soc Magn Reson Med. 2001;9:1391.
18. Cullen JHS, Horsfield MA, Reek CR, et al. A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 1999; 33:1386-1394.
19. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000; 101:1379-1383.
20. Al-Saadi N, Gross M, Paetsch I, et al. Dobutamine induced myocardial perfusion reserve index with cardiovascular MR in patients with coronary artery disease. J Cardiovasc Magn Reson 2002; 4:471-480.
21. Atkinson DJ, Burstein D, Edelman RR. First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 1990;174:757-762.
22. Thompson HK, Starmer CF, Whalen RE, Mcintosh HD. Indicator transit time considered as a gamma Variate. Circ Res 1964; 14:502-515.
23. Keijer JT, Rossum ACV, Eenige MJV, et al. Semiquantitation of regional myocardial blood flow in normal human subjects by first pass magnetic resonance imaging. Am Heart J 1995; 130:893-901.
24. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000; 101:1379-1383.
25. Wilke N, Simm C, Zhang J, et al. Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 1993; 29:485-497
26. Demer LL, Gould KL, Goldstein RA, et al. Assessment of coronary artery disease severity by PET: comparison with quantitative arteriography in 193 patients. Circulation 1989; 79:825-835.
27. Go RT, Marwich TH, MacIntyre WJ, et al. A prospective comparison of rubidium 82 PET and thallium 201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J. Nucl. Med. 1990; 31:1899-1905.
28. Schwaiger M. Myocardial perfusion imaging with PET. J Nucl Med. 1994; 35:693-698.
29. Muzik O, Duvernoy C, Beanlands RS, et al. Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen 13 ammonia documented and PET. J Am Coll Cardiol 1998; 31:534-540.
30. Ishida N, Sakuma H, Motoyasu M, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology. 2003; 229:209-216.
31. Schwitter J, Nanz D, Kneifel S, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001; 103:2230-2235.
32. Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962;10:393–407.
33. Clough AV, Al-Tinawi A, Linehan JH, et al. Regional transit time estimation from image residue curve. Ann Biomed Eng 1994;22:128-143.
34. Bassingthwaighte JB, Wang CY, Chan IS. Blood–tissue exchange via transport and transformation by capillary endothelial cells. Circ Res 1989;65:997-1020.
35. Bassingthwaighte JB, Chan IS, Wang CY. Computationally efficient algorithms for capillary convection-permeation-diffusion models for blood-tissue exchange. Ann Biomed Eng 1992;20:687-725.
36. King RB, Deussen A, Raymond GM, Bassingthwaighte JB. A vascular transport operator. Am J Physiol 1993;265(6 Pt 2):H2196-2208.
37. Choi Y, Huang SC, Hawkins RA, et al. Quantification of myocardial blood flow using 13N-ammonia and PET: comparison of tracer models. J Nucl Med 1999;40:1045–1055.
38. Beanlands RS, Dawood F, Wen WH, et al. Are the kinetics of technetium-99m methoxyisobutyl isonitrile affected by cell metabolism and viability? Circulation 1990;82:1802-1814
39. Diesbourg LD, Prato FS, Wisenberg G, et al. Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease. Magn Reson Med 1992;23:239-253.
40. Kroll K, Wilke N, Jerosch-Herold M, et al. Accuracy of modeling of regional myocardial flows from residue functions of an intravascular indicator. Am J Physiol 1996;40:H1643-H1655.
41. Jerosch-Herold M, Wilke N, Stillman AE, et al. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 1998;25:73-85.
42. Axel L. Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest. Radiol 1983;18: 94-99.
43. Bassingthwaigthe JB, Raymond GR, Chan JIS. ‘‘Principles of tracer kinetics,’’ in Nuclear Cardiology: State of the Art and Future Directions, edited by B. L. Zaret and G. A. Beller ~Mosby-Year Book, St. Louis, 1993, pp. 3–23.
44. Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 2002;29(5):886-897.
45. Hansen PC. Rank-deficient and discrete ill-posed problems, SIAM monographs on mathematical modeling and computation ~Society for industrial and applied mathematics, Philadelphia, 1998.
46. Hadamard J. Lectures on Cauchy’s problem in linear partial differential equations, Yale university Press, New Haven, CT, 1923.
47. Verotta D. Estimation and model selection in constrained deconvolution. Ann Biomed Eng 1993; 21:605-620.
48. Verotta D. Two constrained deconvolution methods using spline functions. J Pharmacokinet Biopharm 1993;21: 609-636.
49. Ostergaard L, Weisskoff RM, Chesler DA, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. I. Mathematical approach and statistical analysis. Magn. Reson. Med 1996; 36:715-725.
50. Pillips DL. A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comput 1962;13:441-464.
51. Johnston PR and Gulrajani RM. Selecting the corner in the L-curve approach to Tikhonov regularization. IEEE Trans Biomed Eng 2000; 47:1293-2000.
52. Atkinson DJ, Burstein D, Edelman RR. First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 1990;174:757-762.
53. Gould KL, Lipscomb K. Effects of coronary stenosis on coronary flow reserve and resistance. Am J Cardiol 1974; 34:48-55.
54. Wilke N, Jerosch-Herold M, Wang Y, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 1997, 204:373-384.
55. Cullen JHS, Horsfield MA, Reek CR, et al. A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 1999; 33:1386-1394.
56. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000; 101:1379-1383.
57. Al-Saadi N, Gross M, Paetsch I, et al. Dobutamine induced myocardial perfusion reserve index with cardiovascular MR in patients with coronary artery disease. J Cardiovasc Magn Reson 2002; 4:471-480.
58. Nagel E, Klein C, Paetsch I, et al. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003; 108:432-437.
59. Atalay MK, Poncelet BP, Kantor HL, et al. Cardiac susceptibility artifacts arising from the heart-lung interface. Magn Reson Med 2001; 45:341-345.
60. Al-Saadi N, Nagel E, Gross M, et al. Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 2000; 36:1557-1564.
61. Fenchel M, Helber U, Simonetti OP, et al. Multislice first-pass myocardial perfusion imaging: Comparison of saturation recovery (SR)-TrueFISP-two-dimensional (2D) and SR-TurboFLASH-2D pulse sequences. JMRI 2004;19:555-563.
62. Jerosch-Herold M, Seethamraju RT, Swingen CM, et al. Analysis of myocardial perfusion MRI. J Magn Reson Imaging 2004;19:758-770.
63. Ryan TJ, Faxon DP, Gunnar RM et al. Guidelines for percutaneous transluminal coronary angioplasty. Circulation 1998;78(2):486-502.
64. Vallee JP, Sostman HD, MacFall JR, et al. MRI quantitative myocardial perfusion with compartmental analysis: a rest and stress study. Magn Reson Med 1997;38:981-989.
65. Dewitte K, Fierens C, Stockl D. Application of the Bland-Altman plot for interpretation of method comparison studies: A critical investigation of its practice. Clinical Chemistry 2002;48(5): 799-801.
66. Sandman DN, Salantri J, Simonetti O. et al. First-pass resting myocardial perfusion at 3T. 2005 ISMRM 14th SCIENTIFIC MEETING & EXHIBITION, Miami, USA, p255.
67. Vallee JP, Lazeyras F, Kasuboski L, et al. Quantification of myocardial perfusion with FAST sequence and Gd bolus in patients with normal cardiac function. JMRI 1999;9:197-203.
68. Neyran B, Janier MF, Casali C, et al. Mapping myocardial perfusion with an intravascular MR contrast agent: robustness of deconvolution methods at various blood flows. Magn Reson Med 2002;48:166-179.
69. Wilke N, Simm C, Zhang J, et al. Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 1993;29:485-497.
70. Jerosch-Herold M, Hu X, Murthy NS, et al. Magnetic resonance imaging of myocardial contrast enhancement with MS-325 and its relation to myocardial blood flow and the perfusion reserve. JMRI 2003;18:544-554.
71. Neimatallah MA, Chenevert TL, Carlos RC, et al. Subclavian MR arteriography: reduction of susceptibility artifact with short echo time and dilute gadopentetate dimeglumine. Radiology2000;217:581-586.
72. Plein S, Radjenovic A, Ridgway JP. Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 2005; 235:423-430.
73. Wolff SD, Schwitter J, Coulden R, et al. Myocardial first-pass magnetic resonance imaging: A multicenter dose-ranging study. Circulation 2004; 110:732-737.
74. Path G, Robitaille PM, Merkle H, et al. Correlation between transmural high energy phosphate levels and myocardial blood flow in the presence of graded coronary stenosis. Circ Res 1990;67:660-673.
75. Lee DC, Simonetti OP, Harris KR, et al. Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenosis of varying severity. Circulation 2004;110:58-65.
76. Keijer JT, vanRossum AC, Wilke N, et al. Magnetic resonance imaging of myocardial perfusion in single-vessel coronary artery disease: Implications for transmural assessment of myocardial perfusion. J Cardiovasc Magn Reson 2000; 2:189-200.
77. Panting JR, Gatehouse PD, Yang GZ, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 2002;346(20): 1948-1953.
78. Fallavollita AJ, Perry BJ, Canty MJ. 18F-2-Deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium. Circulation 1997;95:1900-1909.
79. Wilke N, Jerosch-Herold M, Zenovich A, et al. Magnetic resonance first-pass myocardial perfusion imaging: clinical validation and future applications. JMRI 1999;10:676-685.
80. Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, Antoniucci D. Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 2002;106:2351-2357.
81. Savoye C, Equine O, Tricot O, Nugue O, Segrestin B, Sautiere K, Elkohen M, Pretorian EM, Taghipour K, Philias A, Aumegeat V, Decoulx E, Ennezate PV, Bauters C. Left ventricular remodeling anterior wall acute myocardial infarction in modern clinical practice. Am J Cardiol 2006;98(9)1144-1149.
82. Bolognese L, Cerisano G, Buonamici P, Santini A, Santoro GM, Antoniucci D, Fazzini PF. Influence of infarct-zone viability on left ventricular remodeling after acute myocardial infarction. Circulation 1997;96(10):3353-3359.
83. Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Fujii K, Masuyama T, Kitabatake A, Minamino T. Lake of myocardial perfusion immediately after successful thrombolysis. Circulation 1992;85:1699-1705.
84. Ito H, Okamura A, Iwakura K, Masuyama T, Hori M, Takiuchi S, Negoro S, Nakatsuchi Y, Taniyama Y, Higashino Y, Fujii K, Minamino T. Myocardial perfusion patterns related to Thrombolysis in Myocardial Infarction perfusion grades after coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation 1996;93:1993–1999.
85. Stewart RE, Miller DD, Bowers TR, McCullough PA, Ponto RA, Grines CL, O’Neill WW, Juni JE, Safian RD. PET perfusion and vasodilator function after angioplasty for acute myocardial infarction. J Nucl Med 1997;38:770-777.
86. Ragosta M, Camarano G, Kaul S, Powers ER, Sarembock IJ, Gimple LW. Microvascular integrity indicates myocellular viability in patients with recent myocardial infarction. Circulation 1994;89:2562-2569.
87. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, Blumenthal RS, Lima JAC. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998;97:765-772.
88. Kloner RA, Alker KJ. The effect of streptokinase on intramyocardial hemorrhage, infarct size, and the no-reflow phenomenon during coronary reperfusion. Circulation 1984;70:513-521.
89. Vanhaecke J, Flameng W, Borgers M, Jang IK, Van de Werf F, De Geest H. Evidence for decreased coronary flow reserve in viable postischemic myocardium. Circ Res 1990;67:1201-1210.
90. Wu YW, Tadamura E, Yamamuro M, Kanao S, Marui A, Tanabara K, Komeda M, Togashi K. Comparison of contrast-enhanced MRI with 18F-FDG PET/201 Tl-SPECT in Dysfunctional myocardium: relation to early functional outcome after surgical revascularization in chronic ischemic heart disease. J Nucl Med 2007;48(7):1096-1103.
91. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, van Rossum AC, Shaw LJ, Yucel EK, Society for Cardiovascular Magnetic Resonance, Working Group on Cardiovascular Magnetic Resonance of the European Society of Cardiology. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J 2004;25(21):1940-1965.
92. Yan AT, Gibson MC, Larose E, Anavekar NS, Tsang S, Solomon SD, Reynolds G, Kwong R. Characterization of microvascular dysfunction after acute myocardial infarction by cardiovascular magnetic resonance first-pass perfusion and late gadolinium enhancement imaging. J Cardiovasc Magn Reson 2006;8:831-837.
93. Lee BC, Chen SY, Hsu HC, et al. Effect of cardiac rehabilitation on myocardial perfusion reserve in postinfarction patients. Am J Cardiol 2008;101:1395-1402.
94. Su MY, Yang KC, Wu CC, Wu YW, Yu HY, Tseng RY, Tseng WY. First-pass myocardial perfusion cardiovascular magnetic resonance at 3 Tesla. J Cardiovasc Magn Reson 2007;9(4):633-644.
95. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999;100:1992-2002.
96. Johnson WB, Malone SA, Pantely GA, Anselone CG, Bristow JD. No-reflow and extent of infarction during maximal vasodilation in the porcine heart. Circulation 1988;78:462-472.
97. Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, Mohan V, Becker LC, Zerhouni EA. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 1995;92:1902-1910.
98. Mahrholdt H, Wagner A, Holly TA, Elliott MD, Bonow RO, Kim RJ, Judd RM. Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 2002;106:2322-2327.
99. Matheijssen NA, Louwerenburg HW, van Rugge FP, Arens RP, Kauer B, de Roos A, van der Wall EE. Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole SestaMIBI SPECT for detection of perfusion abnormalities in patients with one-vessel coronary artery disease: assessment by quantitative model fitting. Magn Reson Med 1996;35:221-228.
100. Lima JAC, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI : potential mechanisms. Circulation 1995;92:1117-1125.
101. Rivas F, Cobb FR, Bache RJ, Greenfield JC. Relationship between blood flow to ischemic regions and extent of myocardial infarction: serial measurement of blood flow to ischemic regions in dogs. Circ Res 1976;38:439-447.
102. Betriu A, Masotti M, Serra A, Alonson J, Fernandez-Aviles F, Gimeno F, Colman T, Zueco J, Delcan JL, Garcia E, Calabuig J. Randomized comparison of coronary stent implantation and balloon angioplasty in the treatment of de novo coronary artery lesions (START): a four-year follow-up. J Am Coll Cardiol 1999;34(5):1498-1506.
103. Fletcher GF, Balady G, Blair SN, et al. Statement on exercise benefits and recommendations for physical activity programs for all Americans. Circulation 1996;94:857-862.
104. Todd IC, Bradnam MS, Cooke MBD et al. Effects of daily high-intensity exercise on myocardial perfusion in angina pectoris. Am J Cardiol 1991;68:1593-1599.
105. Griffin KL, Laughlin MH, Parker JL. Exercise training improves endothelium-mediated vasorelaxation after chronic coronary occlusion. J Appl Physiol 1999;87:1948-1956.
106. Hambrecht R, Wolf A, Gielen S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 2000;342:454-460.
107. Gielen S, Schuler G, Hambrech R. Exercise training in coronary artery disease and coronary vasomotion. Circulation 2001;103:e1-e6.
108. Gunning MG, Walker J, Eastick S. Exercise training following myocardial infarction improves myocardial perfusion assessed by thallium-201 scintigraphy. Int J Cardiol 2002; 84: 233-9.
109. Gunning MG, Walker J, Eastick S. Exercise training following myocardial infarction improves myocardial perfusion assessed by thallium-201 scintigraphy. Int J Cardiol 2002; 84: 233-9.
110. Hung J, Gordon EP, Houston N, et al. Changes in rest and exercise myocardial perfusion and left ventricular function 3-26 weeks after clinically uncomplicated acute myocardial infarction: effects of exercise training. Am J Cardiol 1984; 54:943–950.
111. Beller GA, Murray GC, Erkenbrack SK, et al. Influence of exercise training soon after myocardial infarction on regional myocardial perfusion and resting left ventricular function. Clin Cardiol 1992;15:17–23.
112. Su MY, Lee BC, Wu YM, et al. Perfusion of residual viable myocardium in nontransmural infarct zone after intervention: MR quantitative myocardial blood flow measurement. Radiology 2008;249: 820-828.
113. Lee DC, Simonetti OP, Harris KR, et al. Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 2004;101:58-65.
114. Borg GA. Psychological basis of physical exertion. Med Sci Sports Exerc 1982;14:377–381.
115. Belardinelli R, Belardinelli L, Shryock JC, et al. Effects of dipyridamole on coronary collateralization and myocardial perfusion in patients with ischaemic cardiomyopathy. Eur Heart J 2001;22: 1205-1213.
116. Sessa WC, Pritchard K, Seyedi N, et al. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res. 1994;74:349-353.
117. Woodman CR, Muller JM, Laughlin MH, et al. Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercisetrained pigs. Am J Physiol. 1997;273:H2575-H2579.
118. Czernin J, Barnard RJ, Karl TS, et al. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation 1995; 92: 197-204.
119. Barnard RJ, MacAlpin R, Kattus AA, et al. Effect on training on myocardial oxygen supply/demand balance. Circulation 1977;56: 289–291.
120. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88(3):1009-1086.
121. Kellman P, Derbyshire JA, Agyeman KO, et al. Extended coverage first-pass perfusion imaging using slice-interleaved TSENSE. Magn Reson Med 2004; 51:200-204.
122. Su MY, Lee BC, Wu WY, et al. First pass contrast enhanced MRI shows disparate manifestations in exercise-induced perfusion improvement in non-transmural infracted and remote myocardium. Proc ISMRM 17th Scientific Meeting & Exhibition Honolulu, Hawai'i, USA, April 18-24, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top