跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 07:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許元銘
研究生(外文):Yuan-Ming Hsu
論文名稱:膠原蛋白基材對類骨母細胞移動行為之影響及應用於硬骨修補之研究
論文名稱(外文):Impact of collagen substrates on the motile behaviors of osteoblast-like cells and the application of collagen microspheres in bone repair
指導教授:王盈錦
指導教授(外文):Yng-Jiin Wang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:113
中文關鍵詞:組織工程膠原蛋白微粒硬骨修補電氣紡織細胞遷移
外文關鍵詞:Tissue EngineeringCollagen microsphereBone repairElectrospinningCell migration
相關次數:
  • 被引用被引用:2
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分為兩個方向,首先改善膠原蛋白微粒之製程以製備低利徑之微粒,接著進入動物實驗測試膠原蛋白微粒於硬骨修補的潛力,並應用於骨質植體做為填充材料。另一個方向是探討奈米尺寸之膠原蛋白基材對類硬骨細胞移動行為的影響,未來期能藉由調控硬骨植入材料之表面特性來改變材料周圍硬骨組織內細胞的行為表現。
於第一部份實驗中,利用均質機之攪拌乳化法可成功製備出數十微米之膠原蛋白微粒。在改變了數種參數後發現,提高均質機轉速、降低水油相比、提高界面活性劑濃度、降低膠原蛋白溶液之濃度,皆可降低膠原蛋白微粒之粒徑,我門亦可藉由調控上述參數來製作特殊粒徑之微粒。而利用奈米等級之氫氧基磷灰石結晶顆粒,可依需求製作出不同蛋白質/陶瓷比例之膠原蛋白微粒,且陶瓷呈現均勻分佈。
第二部份,在將膠原蛋白微粒應用於骨填補材料的實驗,結果顯示,無論在微粒表面或是包覆於微粒內部,骨髓幹細胞都能貼附生長並增生,並保有分化能力。此外,若以褐藻酸包覆系統製備膠原蛋白微粒,起始的細胞濃度以106 cell/ml會有較好的細胞活性與增生幅度。動物實驗部份,以骨髓幹細胞結合膠原蛋白/氫氧基磷灰石微粒之硬骨修復程度較佳,螢光標定分析也顯示幹細胞有參與硬骨組織的修補。總結來說,運用含骨髓幹細胞之膠原蛋白微粒作為硬骨組織填補材料,是種可行的策略,值得做更進一步的探討。
第三部份,膠原蛋白微粒應用於製作骨質植體的動物實驗亦在本研究中有所探討。實驗設計以定期注射PRP進入植體作為變因。根據放射線學分析結果,實驗組與對照組皆有鈣化組織生成,且隨著植入時間增加而提高鈣化程度。其中,實驗組的鈣化速度較對照組為高,但到二十四週時差異會被拉近。而注射PRP之實驗組植體在早期ALP活性明顯較對照組高,推測PRP所含生長因子讓骨質植體有較高的新骨生成作用發生。根據第二十四週實驗組組織切片H&E染色可以觀察到膠原蛋白/氫氧基磷灰石微粒會逐漸被分解而被新生組織所取代,細部也可觀察到新生血管的產生及成骨細胞的作用,甚至有少量的類骨髓組織生成。此部分動物實驗結果證實,在白兔模型上製作預先成形之骨質植體是可行的。
最後,人類類成骨細胞MG63在不同尺寸(直徑為50-200 nm, 200-500 nm, and 500-1000 nm)膠原蛋白電紡纖維基材上的行為亦得到探討。在膠原蛋白電紡纖維上,MG63細胞的增生較在TCPS及膠原蛋白單體塗佈之玻璃表面上高出約70%。另一方面,細胞之移動性會隨著纖維尺寸的增加而降低。在膠原蛋白基材上,MG63細胞也會有較明顯的張力纖維形成。此外,MG63細胞在不同纖維上的貼附及延展型態亦有所不同。而纖維尺寸的改變對細胞移動性的影響大於對增生的影響。實驗顯示,提供適合的基材表面粗操度可以促進MG63細胞與基材的互動。此結果提供有利資訊於改進以膠原蛋白為基材之生醫材料。
In this study, we have prepared sub-micron collagen microspheres by employing homogenized emulsion process. By controling the homogenizer speed, water to oil ratio, surfactant and collagen concentrations, microspheres of specific size can be obtained. With nanoscale hydroxyapatite crystals, microspheres of various collagen/HAp weight ratios were fabricated with ceramics particles well dispersed in the collagen matrix.
For testing the potential application of collagen microspheres in bone repair, MSCs(mesenchymal stem cells) were cultured on the surface or inside the microspheres. The MSCs cultured with these microspheres maintained their differentiation ability into bone-like tissue. Results of in vivo study showed that MSCs and microspheric composite participated in bone repair and promote healing rate. We conclude that MSCs/microsphere composite has potential in clinical application.
Prefabricated bone segment was examined next. By incorporating vessel bundle into PTFE chamber pre-loaded with collagen microspheres, prefabricated bone graft was made and implanted into rabbits for in vivo study. Newly formed calcified tissue in the bone graft was histologically confirmed. The calcification degree in bone segments of the experiment group was higher at 4 weeks which was probably promoted by PRP injection, but showed no difference as compared with the control group after 24 weeks. Neovascularization and bone remodeling were observed, and the bone marrow like tissue was developed in the bone graft at 24 weeks after implantation. We conclude that the combination of collagen/HAp microspheres, autogenous PRP and a vessel bundle within a artificial vessel is a promising approach for the prefabrication of vascularized bone.
Finally, the behaviors of human osteoblast-like MG63 cells cultured on electrospun collagen fibers of three different sizes (50-200 nm, 200-500 nm, and 500-1000 nm in diameter) were investigated. The growth of MG63 cells on all three electrospun collagen fibers are about 70% higher than those cultured on monomeric collagen and TCPS. The migration speed of MG63 cells, on the other hand, decreased as the diameter of nanofibers increased. There were more distinct actin stress fibers formed in MG63 cells when the cells cultured on collagen substrates as compared with TCPS. In addition, MG63 cells displayed different adhesion and spreading patterns on different sizes of collagen fibers. Size variation of collagen nanofibers apparently has more impact on cell migration distance and cell morphology as compared with cell growth. It was demonstrated that collagen nanofibers promoted MG63 cell interaction with matrices by providing a suitably rough nanometer surface. The results of this study present important information for the development of collagen based biomaterials.
誌謝 I
中文摘要 II
英文摘要 IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 以膠原蛋白微粒為基材做為硬骨組織修補材料之介紹 1
1.1 前言 1
1.2膠原蛋白微粒做為硬骨組織修補材料的介紹 2
1.2.1 骨組織的結構與修復 2
1.2.2 骨填補材料 3
1.2.3 第一型膠原蛋白 5
1.2.4氫氧基磷灰石的簡介 9
1.2.5 製備膠原蛋白微粒之方式 10
1.3細胞包覆系統(CELL ENCAPSULATION) 11
1.4 骨髓幹細胞(MSCS)的介紹 14
1.5 預先製成之骨植體 16
1.5.1 預先製成之骨植體的介紹 16
1.5.2 富含血小板血漿的介紹 18
1.5.3 硬骨生成指標 19
1.6 研究動機 20
第二章 膠原蛋白基材表面結構之尺寸對類骨母細胞(MG63)遷移行為的影響 22
2.1 細胞貼附及遷移的機制 22
2.2細胞與基材的交互作用 24
2.3 不同尺寸之基材表面對貼附型細胞遷移行為的影響 25
2.4 靜電紡織 26
2.4.1 靜電紡織原理 26
2.4.2 靜電紡織的生醫應用 27
2.4.3 膠原蛋白靜電紡織 28
2.5 人類類成骨細胞(MG63)的介紹 28
2.6 研究動機 29
第三章 材料與研究方法 30
3.1 膠原蛋白/氫氧基磷灰石微粒製備之實驗方法 30
3.1.1 第一型膠原蛋白之製備 30
3.1.2 第二型膠原蛋白之製備 30
3.1.3 乳化法製備膠原蛋白/氫氧基磷灰石微粒 31
3.1.4 低粒徑膠原蛋白/氫氧基磷灰石微粒之製備 31
3.1.5 微粒之粒徑分析 32
3.1.6 掃瞄式電子顯微鏡(SEM)樣本之製備 32
3.1.7 膠原蛋白/氫氧基磷灰石微粒之無菌處理 32
3.1.8 骨髓幹細胞之分離與培養 32
3.1.9 骨髓幹細胞於微粒表面之培養 34
3.1.10 細胞計數(cell count)與細胞活性(MTT)測試 34
3.1.11 活細胞之螢光染色 34
3.2 膠原蛋白微粒應用於細胞載體之實驗方法 35
3.2.1 膠原蛋白無菌處理 35
3.2.2 包覆細胞(MSCs)於膠原蛋白微粒之製備 35
3.2.3 膠原蛋白微粒之細胞包覆率測定 36
3.2.4雷射共軛焦顯微鏡(Confocal microscope)樣品之製備 36
3.2.5 冷凍切片樣品製備 37
3.2.6掃瞄式電子顯微鏡(SEM)樣本之製備 37
3.2.7 以螢光染劑(PKH26)標定活細胞之實驗方法 37
3.2.8 MSCs細胞之誘導 38
3.2.9 EDS/X-ray樣品之製備 38
3.2.10 臨界尺寸骨缺陷修補之動物實驗 38
3.2.11 鹼性磷酸酶酵素(ALP)活性 40
3.2.12 組織切片製備步驟 40
3.3 膠原蛋白微粒應用於預先成型骨植體之實驗方法 40
3.3.1 預先成型骨植體的製備 40
3.3.2 預先成型骨植體的動物實驗方法 40
3.3.3 富含血小板血漿的製備 41
3.3.4 放射學分析及新骨生成分析方法 42
3.3.5 鈣化程度分析方法 42
3.3.6 鹼性磷酸酵素(ALP)活性 43
3.3.7 骨鈣素(osteocalcin)含量分析 43
3.4 人類類成骨細胞(MG63)貼附於以靜電紡織製備之膠原蛋白基材的實驗方法 43
3.4.1 以電氣紡織製備膠原蛋白奈米纖維 43
3.4.2 以Rhodamin對膠原蛋白電紡纖維做螢光染色 44
3.4.3 以增強型綠螢光蛋白(eGFP)質粒轉染MG63細胞 44
3.4.4 MG63細胞於膠原蛋白電紡纖維上之培養 44
3.4.5 活細胞動態觀察 44
3.4.6 細胞移動距離的計算 45
3.4.7 細胞之螢光染色 45
3.4.8 細胞肌動蛋白表現的半定量方法 46
3.4.9 掃瞄式電子顯微鏡(SEM)樣本之製備 46
3.5 實驗藥品及設備 46
第四章 小粒徑膠原蛋白/氫氧基磷灰石微粒製備之結果與討論 48
4.1 實驗結果 48
4.2 討論 60
第五章 膠原蛋白微粒應用於細胞載體作為骨缺陷修補材料之結果與討論 62
5.1 實驗結果 62
5.2 討論 75
第六章 填充膠原蛋白微粒之預先成型骨植體配合富含血小板血漿(PRP)注射的動物實驗之結果與討論 76
6.1 實驗結果 76
6.2 討論 84
第七章 人類類骨母細胞(MG63)於膠原蛋白電紡基材上的貼附及遷移之結果與討論 86
7.1 實驗結果 86
7.2 討論 93
第八章 結論及未來方向 95
第九章 參考文獻 97
Indian Institute of Technology Delhi, Department of Textile Technology, http://web.iitd.ac.in/~textile/highlights/fol8/01.htm
王,等人(中華民國專利,證號:127311I) 2001年
吳大任,以膠原蛋白、氫氧基磷灰石微粒作為骨填補材料之研發,博士論文,2006
黃秀萱,膠原蛋白/氫氧基磷灰石微膠粒作為骨母細胞載體之微觀研究,碩士論文,2000
Abalovich AG, Bacqué MC, Grana D, Milei J. Pig pancreatic islet transplantation into spontaneously diabetic dogs. Transplant Proc. 2009;41:328-30
Abercrombie M. 1978 Croonian Lecture – The Crawling Movements of Metazoan Cells. Proc R Soc B 1980;207:129-147
Aebi M. Bone Transplantation, Updating on osteochondral auto and allografting, Springer-Verlag, Berlin 1987
Aghaloo TL, Moy PK, Freymiller EG. Investigation of platelet-rich plasma in rabbit cranial defects: A pilot study. J Oral Maxillofac Surg 2002;60:1176-1181
Aisa MC, Rahman S, Senin U, Maggio D, Russell RG. Cathepsin B activity in normal human osteoblast-like cells and human osteoblastic osteosarcoma cells (MG-63): regulation by interleukin-1 beta and parathyroid hormone. Biochim Biophys Acta 1996;1290:29-36
Akiyama SK. Integrins in cell adhesion and signaling. Human Cell 1996;9:181-186
Anitua E. Plasma rich in growth factors: Preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implant 1999;14:529-535
Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 2006;27:596-606
Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials 2006;27:5681-5688
Bella DC, Lucarelli E, Donati D. Historical review of bone prefabrication. Chir Organi Mov. 2008;92:73-8
Bereiter-Hahn J. Mechanics of crawling cells. Med Eng Phys 2005;27:743-753
Blitiz J., Ultrasonics : method and application. 1971
Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen, elastin. preliminary vascular tissue engineering. Front Biosci 2004;9:1422–1432
Boskey A.L. and Posner A.S. Bone structure, Composition,and Mineralization. Orthopedic Clinics of North America. 1984;15:597-612
Boyan BD, Schwartz Z, Bonewald LF, Swain LD. Localization of 1,25-(OH)2D3 responsive alkaline phosphatase in osteoblast-like cells (ROS 17/2.8, MG 63, and MC 3T3) and growth cartilage cells in culture. Biol Chem 1989;264:11879-11886
Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC. Neovascularization of synthetic membranes directed by membrane architecture. J Biomed Mater Res 1995;29:1517-1524
Bronzino and Joseph D. Biomedical Engineering Handbook. 1995;Chap 45
Buehler MJ, Ackbarow T. Fracture mechanics of protein materials. Mater Today 2007;10:46–58
Bunting CH. Blood-platelet and megalokaryocyte reactions in the rabbit. J. Exp. Med. 1909;4:541-552
Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J. Electrospinning of collagen and elastin for tissue engineering application. Biomaterials 2006;27:724-734
Camargo PM, Lekovic V, Weinlaender M, Vasilic N, Madzarevic M, Kenney EB. Platelet-rich plasma and bovine porous bone mineral combined with guided tissue regeneration in the treatment of intrabony defect in humans. J Periodont Res 2002;37:300-306
Canty EG, Kadler KE. Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 2005;118:1341–1353
Caplan A.I. Review: Mesenchymal Stem Cells: Cell–Based Reconstructive Therapy in Orthopedics. Tissue Engineering. July/August 2005;11(7-8):1198-1211
Caplan Al, Boyan BD. Endochondral bone formation: the lineage cascade. In: Bone 8. Mechanisms of bone development and growth. Hall BK, editor. Boca Raton: CRC Press, 1994;1-46
Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today 2003;8:980-989
Carter SB. Haptotaxis and the mechanism of cell motility. Nature 1967;213:256-60
Chang T.M.S. Semipermeable microcapsules. Science 1964;146:524–525
Chiba H, Matsuyama T. Immunohistochemical localization of bone Gla protein and osteonectin in normal human bone and cartilage tissues, and in osteosarcomas and chondrosarcomas. Nippon Seikeigeka Gakkai Zasshi. 1993;67(5):463-72
Chicurel ME, Singer RH, Meyer CJ, Ingber DE. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 1998;392:730-733
Chu G. preparation of collagen hydroxyapatite matrix for bone repair. US Patent: 4776890,1988
Chu G. R. Nathan. and S.Seyedin. inductive collagen-based bone repair preparations, US Patent: 4888366, 1989
Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW. Topographical control of cell behavior: I. Simple Step Cues. Develop 1987;99:439-448
Cooper JA, Schafer DA. Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol. 2000;12:97-103
Costantino P.D., Friedman C.D., Otolaryngol Clin. North Am. 1994;27: P1037
Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites. Mater Sci Eng R Rep 2007;57:1–27
Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001;294:1708–1712
Defilippi P, Olivo C, Venturino M, Dolce L, Silengo L, Tarone G. Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc Res Tech 1999;47:67-78
Devreotes PN, Zigmond SH.. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 1988;4:649-86
Dey Z., Miksik I. and Eckhardt A. Preparative procedures and purity assessment of collagen proteins. Journal of Chromatography B 2003;790:45–275
Diehl KA, Foley JD, Nealey PF, Murphy CJ. Nanoscale topography modulates corneal epithelial cell migration. J Biomed Mater Res A 2005;75:603-11
Ding B., Kim HY., Lee SC., Shao CL., Lee DR, Park SJ, Kwag GB, Choi KJ, J Polym Sci Part B:Polym. Phys. 2002;40:1261
Doshi J, Reneker DH. Electrospinning process and applications of electrospun fiber. J. Electrostatics. 1995;35:151
Driessen A. A. Biomaterials. 1982;3: P113
Duan XJ, Yang L, Li QH. Molecularmechanism of synergism of angiogenesis and bone regeneration. Linchuang Guke Zazhi 2005;8:88-91
Elias K.L., Price R.L., Webster T.J.. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials. 2002;23: 3279
Fleischmajer R., Fisher L. W., Macdonald E. D., Jacobs L., Perlish J. S. and Termine J. D..Decorin interacts with fibrillar collagen of embryonic and adult skin.Journal of Structure Biology. 1991;106,82-90
Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999;20:573-588
Formhals A. Process and apparatus for preparing artificial threads. U.S. patent 1934;1,975,504
Froum SJ, Wallace SS, Tarnow DP, Cho SC. Effect of platelet-rich plasma on bone growth and osseointegration in human maxillary sinus grafts: three bilateral case reports. Int J Periodontics Restorative Dent 2002;22:45-53
Fuerst G, Gruber R, Tangl S, Sanroman F, Watzek G. Effects of fibrin sealant protein concentrate with and without platelet-released growth factors on bony healing of cortical mandibular defects. An experimental study in minipings. Clin Oral Impl Res 2004;15:301-307
Gill D.R., Ireland D.C.R., Hurley J.V., Morrison W. The prefabrication of a bone graft in a rat model. J Hand Surg. 1998;23:312–321
Glenn HL, Jacobson BS. Cyclooxygenase and cAMP-dependent protein kinase reorganize the actin cytoskeleton for motility in HeLa cells Arachidonic Acid Signaling to the Cytoskeleton: the Role of Cyclooxygenase and Cyclic AMP Dependent Protein Kinase in Actin Bundling. Cell Motil Cytoskeleton 2003;55: 265-277
Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 2007;18:241-268
Grant ME. From collagen chemistry towards cell therapy–a personal journey. Int J Exp Pathol 2007;88:203–214
Gronowicz G, McCarthy MB. Response of human osteoblasts to implant materials: integrin-mediated adhesion. Orthop Res 1996;14:878-887
Gross U., Brandes J., Strunz V. J. Biomed. Mater. Res. 1981;15:P291
Gundberg CM. Biochemical markers of bone formation. Clin Lab Med. 2000;20(3):489-501. Review.
Haeberle S, Naegele L, Burger R, von Stetten F, Zengerle R, Ducrée J. Alginate bead fabrication and encapsulation of living cells under centrifugally induced artificial gravity conditions. J Microencapsul. 2008;25:267-74
Harvey W.K., Pincock J.L., Matukas V.J. and Lemons J.E. J. Oral maxillofac. Surg. 1985;43:277
Hasse C., Klock G., Schlosser A., Zimmermann U. & Rothmund M., Parathyroid allotransplantation without immunosuppression. Lancet 1997;351:1296-1297
Haugland, R.P., Handbook of Fluorescent Probes and Research Chemicals. Molecular Probes Inc., 6th edition, 1996
Hench L.L., Paschall H.A. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res. 1973;7:25-42
Hirase Y., Valauri F.A., Buncke H.J. Prefabricated sensate myocutaneous and osteomyocutaneous free flaps: An experimental model. Preliminary report. Plast Reconstr Surg. 1988;82:440-446
Hollinger J. and Wong M.E.K. The integrated processes of hard tissue regeneration with special emphasis on fracture healing. Oral surgery oral medicine oral pathology. 1996;82:594-06
Hollinger J.O., Brekke J., Gruskin E. and Lee D. Role of Bone Substitutes. Clinical orthopaedics and related research.Number 1996;324:55-65
Holmes R.E., Hagler H.K. Plast Reconstr. Surg. 1988;81: P662
Hortelano G., Al-Hendy A., Ofosu F.A. & Chang P.L. Delivery of human Factor IX in mice by encapsulated recombinant myoblasts: a novel approach towards allogeneic gene therapy of hemophilia B. Blood 1996;87:5095–5103
Hsu B.R.S., Chen HC., Fu S.H., Huang Y.Y. and Huang H.S. The use of field effect to generate calcium alginate microspheres and its application in cell transplantation. J Formos Med Assoc. 1994;93(3): 240-245
Hsu F.Y., Tsai S.W., Wang F.F. and Wang Y.J. The collagen-containing alginate/poly(L-lysine)/alginate microcapsules, Art. Cells, Blood Subs., and Immob. Biotech. 2000;28:147-154
Huang L. H., Nimni M. E..Preparation of Type I collagen fibrillar matrices and the effects of collagen concentration of fibroblast contraction. Biomed. Eng. Appl. Basis.Comm. 1993;5:664
Huang Zheng-Ming, Zhang Y.-Z., Kotaki M., Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. 2003;63:2223
Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11-25
Jaaskelainen T, Pirskanen A, Ryhanen S, Palvimo JJ, DeLuca HF, Maenpaa PH. Functional interference between AP-1 and the vitamin D receptor on osteocalcin gene expression in human osteosarcoma cells. Eur J Biochem 1994;224:11-20
Jarcho M, Kay JK, Gumaer RH, Doremus RH, Drobeck HP . Tissue, cellular, and subcellular events at a boneceramic hydroxylapatite interface. J Bioengineering 1977;1:79-92
Jarcho M. Clin Orthop 1981;157:P259
Johnson E.E., Uris M.R. and Finerman G.A.M. Resistant nonunions and partial or complete segemental defects of long bones. Clin. Orthop. Rel. Res. 1992;277:229-237
Kadler K. Extracellular matrix 1: fibril-forming collagens.Protein profile 1994;5(1)
Keely PJ, Fong AM, Zutter MM, Santoro SA. Alteration of Collagen Dependent Adhesion, Motility, and Morphogenesis by the Expression of Antisense α2 Integrin mRNA in Mammary Cells. J Cell Sci 1995;108:595–607
Kenawy E., Bowlin G.L., Mansfield K., Layman J., Simpson D.G., Sanders E.H., Wnek G.E. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. of controlled release. 2002;81:57
Kenley R.A., Yim K., Abrams J., Ron E., Turek T., Marden L.J. and Hollinger J.O. Biotechnology and bone graft substrates. Pharmaceutical Res. 1993;10:1393-1401
Khouri R.K., Koudsi B., Reddi H. Tissue transformation into bone in vivo. JAMA 1991;266:1953-1955
Khouri R.K., Upton J., Shaw W.W. Principles of flap prefabrication. Clin Plast Surg 1992;19:763-771
Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 1996;32:55-63
Kim BS, Nikolovski J, Bonadio J, Smiley E, Mooney DJ. Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp Cell Res 1999;251:318–328
Kim SG, Chung CH, Kim YK, Park JC, Lim SC. Use of particulate dentin-plaster of Paris combination with / without platelet-rich plasma in the treatment of bone defects around implants. Int J Oral Maxillofac Implants 2002;17:86-92
Komisar A. The functional results of mandibular reconstruction. Laryngoscope 1990;100:364
Koski A., Yim K., Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters. 2004;58:493
Kyeyune-Nyombi E, Lau KH, Baylink DJ, Strong DD. 1,25-Dihydroxyvitamin D3 stimulates bone alkaline phosphatase gene transcription and mRNA stabilization in human bone cells. Arch Biochem Biophys 1991;291:316-325
Landesberg R, Roy M, Glickman RS. Quantification of growth factor levels using a simplified methods method of platelet-rich plasma gel preparation. J Oral Maxillofac Surg 2000;58:297
Lanza R.P., Hayes J.L. & Chick W.L. Encapsulated cell technology. Nature Biotechnol. 1996;14:1107–1111
Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell 1996;84:359-69
Lauffenburger DA. Models for receptor-mediated cell phenomena: adhesion and migration. Annu Rev Biophys Biophys Chem 1991;20:387-414
Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456-69
Lewis L, Verna JM, Levinstone D, Sher S, Marek L, Bell E. The Relationship of Fibroblast Translocations to Cell Morphology and Stress fiber Density. J Cell Sci 1982;53:21-36
Li CY, Gao SY, Terashita T, Shimokawa T, Kawahara H, Matsuda S, Kobayashi N. In vitro assays for adhesion and migration of osteoblastic cells (Saos-2) on titanium surfaces. Cell Tissue Res 2006;324:369-375
Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials 2005;26:5999-6008
Li S, Butler P, Wang Y, et al. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc. Natl. Acad. Sci.USA 2002;99:3546-51
Li S, Guan JL, Chien S. Biochemistry and biomechanics of cell motility. Annu Rev Biomed Eng 2005;7:105-150
Li W., Laurencin C.T., Caterson E.J., Tuan R.S., Ko F.K. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J. of Biomed. Mater. Res. 2002;60:613
Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in threedimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 2003;67:1105-1114
Li WJ, Laurencin CT, Caterson EJ, Tua RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 2002;60:613-621
Lim F. & Sun A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980;210:908-909
Liu Y, Liu T, Ma X, Fan X, Bao C, Cui Z. Effects of encapsulated rabbit mesenchymal stem cells on ex vivo expansion of human umbilical cord blood hematopoietic stem/progenitor cells. J Microencapsul. 2009;26:130-42
Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophys. J. 2000;79:144-52
Low MG, Saltiel AR. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science. 1988;239:268-75. Review.
Ma Z, He W, Yong T, Ramakrishna S. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 2005;11:1149-1158
Ma ZW, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005;11:101-109
Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith LG. Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci. 2000;113:1677-1686
Maheshwari G, Wells A, Griffith LG, Lauffenburger DA. Biophysical Integration of Effects of Epidermal Growth Factor and Fibronectin on Fibroblast Migration. J Biophys 1999;76:2814-2823
Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J Jr, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 1995;29:389-401
Marx R.E.,Carlson E.R., Eichstaedt R.M., et al. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85:638-646
Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85:638-646
Massague J. The transforming growth factor-beta family. Annu. Rev. Cell Biol. 1990;6:597-641
Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules 2002;3:232-238
McCabe LR, Last TJ, Lynch M, Lian J, Stein J, Stein G. Expression of cell growth and bone phenotypic genes during the cell cycle of normal diploid osteoblasts and osteosarcoma cells. J Cell Biochem 1994;56:274-282
Minguell JJ, Erices A, Conget P.Mesenchymal stem cells. Exp Biol Med (Maywood). 2001;226(6):507-20 Review.
Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 2004;25:1883-1890
Moon A.G. and Tranquillo R.T. Fibroblast-populated collagen microsphere assay of cell traction force: part1. continuum model. AICHE.J. 1993;39: 163
Morrison W.A., Pennington A.J., Kumta S.K. Clinical applications and technical limitations of prefabricated flaps. Plast Reconstr Surg. 1997;99:378-385
Muschler G.F. and Lane L.M. Orthospedic surgery, Bone grafts and bone substitutes. p.p 375-407, W.B. Saunder, New York 1992
Muschler GF, Negami S, Hyodo A, Gaisser D, Easley K, Kambic H. Evaluation of collagen ceramic composite graft materials in a spinal fusion model. Clin Orthop Relat Res. 1996;328:250-60
Mustoe TA, Purdy J, Gramates P. Reversal of impaired wound healing in irradiated rats by platelet derived growth factor-BB: Requirement of an active bone marrow. Am J Surg 1989;158: 348-350
Okuda K, Kawase T, Momose M, et al. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J Periodontol 2003;74(6):849-857
Orive G. et al. Encapsulated cell technology: from research to market. Trends Biotechnol. 2002;20:382-387
Orive G., Hernandez R.M., Gascon A.R., Calafiore R., Chang T. M.S., Vos P., Hortelano G., Hunkeler D., Lacik I., Shapiro A.J. and Pedraz J. L. Cell encapsulation: Promise and progress. Nature Medicine. 2003;9:104-107
Ottani V., Martini D., Franchi M., Ruggeri A., Raspanti M.. Hierarchical structures in fibrillar collagens. Micron 2002;33:587–596
Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. Integrin-ligand Binding Properties Govern Cell Migration Speed Through Cell-substratum Adhesiveness. Nature 1997;385:537–540
Park JB., Biomaterials Science and Engineering. New York and London: Plenum Press, 1984
Pasquire F.G., Blary M.C., Anselme k., Hardoin P. Evaluation of hydroxyapatite power coated with collagen as an injectable bone substitute; microscopic study in rabbit. Journal of materials science: materials in medicine 1996;7:63-67
Penolazzi L, Tavanti E, Vecchiatini R, Lambertini E, Vesce F, Gambari R, Mazzitelli S, Mancuso F, Luca G, Nastruzzi C, Piva R. Encapsulation of Mesenchymal Stem Cells from Warthon's Jelly in Alginate Microbeads. Tissue Eng Part C Methods. 2009 Apr 29. [Epub ahead of print]
Pierce GF, Tarpley J, Yanagihain D. PDGF-BB, TGF-β1 and basic FGF in dermal wound healing: Neo-vessel and matrix formation and cessation of repair. Am J Pathol 1992;140: 1375-1388
Piez KA., Pharriss BB., Smestad TL., Hensrick D. United States Patent 4992226. 1991
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147
Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003;112:453-65
Posner A. S., Betts F., Blumenthal N.C. Skeletal research: an experimental approach. New York: Academic Press, 1979
Prakash S. & Chang T.M.S. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nature Med. 1996;2:883–887
Price RL, Gutwein LG, Kaledin L, Tepper F, Webster TJ. Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography. J Biomed Mater Res A 2003;67:1284-1293
Raftopoulou M, Hall A. Cell migration:Rho GTPases lead the way. Dev. Biol. 2004;265:23-32
Raghoebar GM, Schortinghuis J, Liem R, Ruben JL, Van Der Wal JE, Vissink A. Does platelet-rich plasma promote remodeling of autologous bone grafts used for augmentation of the maxillary sinus floor? Clin Oral Impl Res 2005;16:349-356
Ranly DM, McMillan J, Keller T, et al. Platelet-derived growth factor inhibits demineralized bone matrix-induced intramuscular cartilage and bone formation. A study of immunocompromised mice. J Bone Joint Surg Am 2005;87:2052-2064
Rho KS, Jeong L, Lee G, Seo B-M, Park YJ, Hong S-D, Roh S, Cho JJ, Park WH, Min B-M. Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 2006;27:1452-1461
Ridley AJ. Rho GTPases and cell migration. J. Cell Sci. 2001;114:2713-22
Rossler B., Kreuter J. and Scherer P. Collagen microspheres: preparation and properties. J.of Microencapsulation. 1995;12(1):49-57
Rowley J.A. and Mooney D.J.,Alginate type and RGD density control myoblast phenotype. J. Biomed. Mat. Res. 2002;60:217–223
Roy P, Petroll WM, Cavanagh HD, Jester JV. Exertion of tractional force requires the coordinated up-regulation of cell contractility and adhesion. Cell Motil Cytoskeleton 1999;43:23-34
Sandberg M.M. Ann. Med. 1991;23: P207
Sasaki N., Matsushima N., Ikawa T., H. Yamamura., Fukida A. J. Biomech. 1989;2: P157
Scharp D.W. et al. Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects. Diabetes 1994;43:1167–1170
Schendel S., Cholon A., Bresnick, S. A ceramic containing crosslinked collagen as a new cranial onlay and inlay materials. Ann.Plast.Surg. 1997;38:158-162
Schindler M, Ahmed I, Nur-E-Kamal A, Kamal J, Grafe TH, Chung HY, Meiners S. Synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 2005;26:5624-5631
Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol. 1995;11:549-99
Sell S, Gaissmaier C, Fritz J, Herr G, Esenwein S, Kusswetter W, et al. Different behavior of human osteoblastlike cells isolated from normal and heterotopic bone in vitro. Calcif Tissue Int 1998;62:51-59
Shanbhag AS, Jacobs JJ, Black J, Galante JO, Glant TT. Macrophage/particle interactions: effect of size, composition and surface area. J Biomed Mater Res. 1994;28(1):81-90
Shapiro A.M.J. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 2000;343:230–238
Sheetz MP, Felsenfeld D, Galbraith CG, Choquet D. Cell migration as a fivestep cycle. Biochem. Soc. Symp. 1999;65:233–43
Shen T.Y. Microvascular transplantation of prefabricated free thigh flap (letter). Plast Reconstr Surg 1982;69:568
Shih YV, Chen CN, Tsai SW, Wang YJ, Lee OK. Growth of mesenchymal stem cell on electrospun type I collagen nanofibers. Stem Cells 2006;24:2391-2397
Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24:4353–4364
Shoulders MD, Raines RT. Collagen Structure and Stability. Annu Rev Biochem. 2009;78:929-58
Singhvi R, Stephanopoulos G, Wang DIC, Review: effects of substratum morphology on cell physiology. Biotechnol Bioeng 1994;43:764-771
Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopaedic implant materials. Bone 1996;18:451-457.
Soon-Shiong P. et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 1994;343:950–951
Soucacos PN, Dailiana A, Beris AE, Johnson EO. Vascularised bone grafts for the management of nonunion. Injury 2006;37:S41-50
Stitzel J, Liu Jie, Lee SJ, Komura M, Berry J, Soker S, Lim G, Dyke MV, Czerw R, Yoo JJ, Atala A. Controlled fabrication of a biological vascular substitute. Biomaterials 2006;27:1088-1094
Strand B.L. et al. Microcapsules made by enzymatically tailored alginate. J Biomed Mater Res A. 2003;64(3):540-50
Sun Y.L., Ma X.J., Zhou D.B., Vacek I. & Sun A.M. Normalization of diabetes in spontaneously diabetic cynomologous monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J. Clin. Invest. 1996;98:1417–1422
Takahashi GW, Moran D, Andrews DF, Singer JW. Differential expression of collagenase by human fibroblasts and bone marrow stromal cells. Leukemia 1994;8:305-308
Tasi IY, Kimura M, Stockton R, Green JA, Puig R, Jacobson B, Russell TP. Fibroblast Adhesion to Micro- and Nano-heterogeneous Topography Using Diblock Copolymers and Homopolymers. J Biomed Mater Res A 2004;71:462-469
Taylor D. Fracture and repair of bone: a multiscale problem. J Mater Sci 2007;42:8911–8918
Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 2003;116:1881-1892
Telemeco TA, Ayres C, Bowlin GL, Wnek GE, Boland ED, Cohan N, Baumgarten CM, Mathews J, Simpson DG. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater 2005; 1:377-385
TenHuisen SK, Martin IR and Klimkiewicz M. Formation and properties of a synthetic bone composite: hydroxyapatite–collagen, J. Biomed. Mater. Res. 1995;29:803-810
Teo WE, He W, Ramakrishna S. Electrospun scaffold tailored for tissue-specific extracellular matrix. Biotechnol J 2006;1:918-929
Trueta J., and Little K. The vascular contribution to osteogenesis. II. Studies with the electron microscope. J. Bone Joint Surg. Br. 1960;42:367
Urist M.R. Bone morphogenetic protein in bone generation and regeneration. J. Jap. Orthop. Assoc. 1991;65:s257-258
Veis A. and Payne K. Collagen (Nimni,M. E.,Ed.) 1988;1:113-138.CRC Press Inc.
Venugopal J, Ma LL, Yong T, Ramakrishna S. In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Cell Biol Int 2005;29:861-867
Venugopal J, Ramakrishna S. Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng 2005;11:847-854
Wallace, Donald G., McMullin, Hugh,Chu,George. US Patent: 5204382, 1993
Walsh W. R., Labrador D. P. and Kim H. D. Annals of Biomed. Eng. 1994;22: 404
Walsh, W. R., Guzelsu, N., Biomaterials, 1993;15:137
Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, Wang S. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomaterials 2005;26:4453-4459
Wang E.A., Rosen V., DAlesandro J.S., Bauduy M., Cordes P., Harda T., Isreal D.I. and Hewick R.M. Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl. Acad. Sci. USA. 1990;87: 2220-2224
Wang R.Z., Chi H.B., Lu H.B., Wen C.L., Ma H.D. Li. Synthesis of nanophase hydroxyapatite/collagen composite. Journal of materials science letters 1995;14:490-492
Wang YJ, Lin FH, Sun JS, Huang YC, Chueh SC, Hsu FY. Collagen-hydroxyapatite microspheres as carriers for bone morphogenic protein-4. Atif Organs. 2003;27(2):162-8
Webb K, Hlady V, Tresco PA. Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mater Res 2000;5;49:362-8
Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced Functions of Osteoblast on Nanophase Ceramics. Biomaterials 2000;21:1803-1810
Wonzney J.M. Bone morphogenetic proteins. Prog. Growth Factor Res. 1989;1:267-280
Xu W., Liu L. & Charles I.G. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J. 2002;16:213–215
Yim EK, Leong KW. Significance of synthetic nanostructures in dictating cellular response. Nanomedicine 2005;1:10-21
Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;12:2077–2082
Zechner W, Tangl S, Tepper G, Frust G, Bernhart T, Haas R, Mailath G, Watzek G. Influence of platelet-rich plasma on osseous healing of dental implants: A histologic and histomorphometric study in minipigs. Int J Oral Maxillofac Implants 2003;18:15-22
Zeugolis DI, Khew ST, Yew ESY, Ekaputra AK, Tong YW, Yung L-YL, Hutmacher DW, Sheppard C, Raghunath M. Electro-spinning of pure collagen nano-fibers – Just an expensive way to make gelatin? Biomaterials 2008;29:2293-2305
Zhong SP, Teo WE, Zhu X, Beuerman R, Ramakrishna S, Yung LYL. Development of a novel collagen-GAG nanofibrous scaffold via electrospinning. Mater Sci Eng C 2007;27:262-266
Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 2004;25:2695-2711
Zong X., Kim K., Fang D., Ran S., Hsiao B.S., Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 2002;43:4403
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊