跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 09:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊爾元
研究生(外文):Er-Yuan Chuang
論文名稱:量子點標定膠原蛋白作為多孔基材的研究
論文名稱(外文):Studies of QDs labeled type I collagen based porous matrix
指導教授:王盈錦王盈錦
指導教授(外文):Yng-Jiin WangYng-Jiin Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:膠原蛋白量子點冰晶冷凍乾燥鷹架
外文關鍵詞:collagenQDotsice crystalfreeze dryingscaffold
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一型膠原蛋白由於多孔的結構已被用來當作傷口癒合和骨填充物的生醫材料。傳統的方法來研究膠原蛋白植入物和組織間的交互作用多是犧牲動物後病理組織切片染色來新獲得標本。大部分的情況,殘餘的膠原蛋白無法清楚的被分辨從組織的膠原蛋白,因此本研究的目標是來發展膠原蛋白標定可發螢光的量子點作成多孔基材,作為其生物相容性的評估。
硒化鎘量子點標定膠原蛋白鷹架可利用冷凍乾燥法製作出大約200微米左右的孔徑分布;適合細胞向內長,利用MTT測試得知膠原蛋白被標定量子點的含量無毒。動物實驗結果指出有接量子點的膠原蛋白多孔基材比對未接量子點的多孔基材其發炎反應沒有差異,量子點標定膠原蛋白的多孔基材提供了出色的工具可利用共軛交顯微鏡來研究基材植入後與組織交互作用重組出的三維立體結構。
Type I collagen with porous structure has been used as the biomaterials of wound dressings and bone grafts. The conventional method to study the tissue interaction with collagen implant is to retrieve the specimen from the sacrificed animal followed by dissection and staining for pathological examination. In most cases, the residual collagen can not be clearly discerned from the tissue collagen. Therefore the aim of this study was to develop a porous matrix of collagen labeled with fluorescent quantum dots (QDs) for biocompatibility study.
CdSe/ZnS QDs-labeled collagen scaffold was fabricated by freeze dried method with average pore size of about 200 �慆 suitable for cell in-growth. There is no cyto-toxicity of the QDs-labeled collagen matrix as determined by MTT assay. Results of the animal implant study indicate that there is no difference of the tissue inflammation caused by the QDs-labeled collagen as compared with the unlabeled one. The QDs-collagen porous matrix provides an excellent tool to study tissue reaction in three dimensions using the confocal microscopy.
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1-1前言 1
1-2-1 皮膚構造 2
1-2-2 皮膚功能: 5
1-2-3 人工皮膚材料須具備條件 5
1-2-4人工皮膚的應用 7
1-2-5人工皮膚設計 9
1-3膠原蛋白重組 10
1-3-1機制Collagen assembly- mechanism 10
1-3-2動力學Collagen assembly- mechanism 13
1-3-3熱力學Collagen assembly- thermaldynamics 14
1-4組織工程鷹架製程 15
1-4-1多種鷹架製程 16
1-4-2組織工程鷹架基本需求 23
1-4-3各種組織鷹架製程的優缺點 25
1-5冷凍乾燥製造多孔膠原蛋白基材 25
1-5-1控制冰晶成長 26
1-5-2冰晶成長理論 27
1-5-3聚集程序(coarsening process)動力學 28
1-5-4影響coarsening time間接調控冰晶 31
1-5-5冰晶成長型態(ice crystal morphology) 33
1-5-6組織鷹架孔洞呎吋的功能性 34
1-6量子點 35
1-7研究動機) 37
第二章 實驗藥品與儀器 38、39
第三章 實驗方法與材料 40
3-1材料製備與分析架構 40
3-1-1第一型膠原蛋白製備 42
3-1-2 TEM觀察collagen fiber 接量子點 43
3-1-3 量子點接合膠原蛋白纖維以懸浮狀態冷凍乾燥製成海綿 44
3-1-3可程式冷凍降溫儀 44
3-2基材成分定量 45
3-2-1螢光光度計測量量子點螢光強度 45
3-2-2 蛋白質濃度定量(Lowry method) 46
3-3基材物理性質 47
3-3-1測量膠原蛋白接合量子點不同酒精比例懸浮狀態黏度 47
3-3-2 基材孔徑測量Pore size determine 49
3-3-3 含水率 50
3-3-4滲透率 50
3-4體外測試(in vitro) 50
3-4-1 體外降解測試(Collagen-QD-HA sponge in vitro degradation test) 50
3-4-2 MTT 細胞活性測試 51
3-5共軛交顯微鏡(confocal) 53
3-6動物實驗(in vivo) 53
3-6-1超音波觀察 55
3-6-2發炎細胞評估計數 56
第四章 實驗結果與討論 57
4-1基材分析 57
4-1-1第一型膠原蛋白製備 57
4-1-2 膠原蛋白纖維接合量子點(TEM) 57
4-1-3量子點膠原蛋白定量 59
4-1-4膠原蛋白懸浮液(suspension)黏度測量 62
4-1-5共軛交顯微鏡(confocal)觀察基材 63
4-2膠原蛋白-量子點海綿基材物化性質 64
4-2-1孔洞結構 64
4-2-2其他物化性質 67
4-3體外測試(in vitro) 68
4-3-1體外酵素降解評估(in vitro) 68
4-3-2 QD濃度對fibroblast 生長影響MTT 測試 71
4-4動物實驗 74
4-4-1超音波觀察組織與基材交互影響後體積變化 74
4-4-2發炎評估細胞計數 84
4-4-3量子點可利用的優點 92
第五章 結論 94
參考文獻 97
Al-Munajjed, A., M. Hien, et al. (2008). "Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds." Journal of Materials Science: Materials in Medicine 19(8): 2859-2864.
Anselme, K., C. Bacques, et al. (1990). "Tissue reaction to subcutaneous implantation of a collagen sponge. A histological, ultrastructural, and immunological study." Journal of Biomedical Materials Research 24(6).
Bailey, A. (2000). "The fate of collagen implants in tissue defects." Wound Repair and Regeneration 8(1): 5-12.
Bello, G., I. Jackson, et al. (2007). "The Use of Polyacrylamide Gel in Soft-Tissue Augmentation: An Experimental Assessment." Plastic and Reconstructive Surgery 119(4): 1326.
Cereto, F. (2004). "Validation of automated blood cell counters for the diagnosis of spontaneous bacterial peritonitis." American Journal of Gastroenterology 99(7): 1400-1400.
Chan, W. and S. Nie (1998). "Quantum dot bioconjugates for ultrasensitive nonisotopic detection." Science 281(5385): 2016.
Chen, L.-D., J. Liu, et al. (2008). "The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis." Biomaterials 29(31): 4170-4176.
Cheng, L., A. Dwan, et al. (1995). "Membrane formation by isothermal precipitation in polyamide-formic acid-water systems I. Description of membrane morphology." Journal of Polymer Science Part B: Polymer Physics 33(2).
Cooper, A. (1970). "Thermodynamic studies of the assembly in vitro of native collagen fibrils." Biochemical Journal 118(3): 355.
Dagalakis, N., J. Flink, et al. (1980). "Design of an artificial skin. Part III. Control of pore structure." Journal of Biomedical Materials Research 14(4).
Doillon, C. (1987). "Porous collagen sponge wound dressings: in vivo and in vitro studies." Journal of Biomaterials Applications 2(4): 562.
Gomes, M., J. Godinho, et al. (2002). "Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties." Materials Science & Engineering C 20(1-2): 19-26.
Gomes, M., H. Holtorf, et al. (2006). "Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor." Tissue Engineering 12(4): 801-809.
Gomes, M., V. Sikavitsas, et al. (2003). "Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three dimensional scaffolds."
Hardman, R. (2006). "A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors." Environmental health perspectives 114(2): 165.
Harris, L., B. Kim, et al. (1998). "Open pore biodegradable matrices formed with gas foaming." Journal of Biomedical Materials Research 42(3).
Haugen, H., L. Gerhardt, et al. (2005). "Biostability of polyether-urethane scaffolds: A comparison of two novel processing methods and the effect of higher gamma-irradiation dose." Journal of Biomedical Materials Research Part B: Applied Biomaterials(2).
Heijkants, R., T. Van Tienen, et al. (2006). "Preparation of a polyurethane scaffold for tissue engineering made by a combination of salt leaching and freeze-drying of dioxane." Journal of Materials Science 41(8): 2423-2428.
Hou, Q., D. Grijpma, et al. (2003). "Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique." Biomaterials 24(11): 1937-1947.
Ikada, Y. (2006). "Challenges in tissue engineering." Journal of the Royal Society Interface 3(10): 589-601.
Kotch, F. and R. Raines (2006). "Self-assembly of synthetic collagen triple helices." Proceedings of the National Academy of Sciences 103(9): 3028-3033.
Lee, M., B. Wu, et al. (2008). "Effect of scaffold architecture and pore size on smooth muscle cell growth." Journal of Biomedical Materials Research Part A(4).
Lee, S., B. Kim, et al. (2003). "Elastic biodegradable poly (glycolide-co-caprolactone) scaffold for tissue engineering." Journal of Biomedical Materials Research(1).
Leong, K., C. Cheah, et al. (2003). "Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs." Biomaterials 24(13): 2363-2378.
Li, D., Y. Wang, et al. (2004). "Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films." Advanced Materials 16(4): 361-366.
Lucchetti, L. and F. Simoni (2000). "Coarsening and phase separation in ultraviolet cured polymer dispersed liquid crystals." Journal of Applied Physics 88: 3934.
Luttikhuizen, D., M. Harmsen, et al. (2007). "Cytokine and chemokine dynamics differ between rats and mice after collagen implantation." Journal of Tissue Engineering and Regenerative Medicine 1(5).
McKegney, M., I. Taggart, et al. (2001). "The influence of crosslinking agents and diamines on the pore size, morphology and the biological stability of collagen sponges and their effect on cell penetration through the sponge matrix." Journal of Materials Science: Materials in Medicine 12(9): 833-844.
Mendelson, M. (1969). "Average grain size in polycrystalline ceramics." Journal of the American Ceramic Society 52(8): 443-446.
Moore, M., E. Jabbari, et al. (2004). "Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography." Journal of Biomedical Materials Research(2).
Na, G., L. Butz, et al. (1986). "Mechanism of in vitro collagen fibril assembly. Kinetic and morphological studies." Journal of Biological Chemistry 261(26): 12290-12299.
Nazarov, R., H. Jin, et al. (2004). "Porous 3-D scaffolds from regenerated silk fibroin." Biomacromolecules 5(3): 718-726.
NOITUP, P., M. MORRISSEY, et al. (2006). "IN VITRO SELF-ASSEMBLY OF SILVER-LINE GRUNT TYPE I COLLAGEN: EFFECTS OF COLLAGEN CONCENTRATIONS, pH AND TEMPERATURES ON COLLAGEN SELF-ASSEMBLY." Journal of Food Biochemistry 30(5): 547-555.
O’Brien, F., B. Harley, et al. (2004). "Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds." Biomaterials 25(6): 1077-1086.
Oh, S., I. Park, et al. (2007). "In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method." Biomaterials 28(9): 1664-1671.
Oliveira, J., S. Silva, et al. (2006). "Innovative technique for the preparation of porous bilayer hydroxyapatite/chitosan scaffolds for osteochondral applications." KEY ENGINEERING MATERIALS 309(2): 927.
Park, S., H. Lee, et al. (2003). "Biological characterization of EDC-crosslinked collagen–hyaluronic acid matrix in dermal tissue restoration." Biomaterials 24(9): 1631-1641.
Park, S., J. Park, et al. (2002). "Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking." Biomaterials 23(4): 1205-1212.
Pavlov, M., J. Mano, et al. (2004). "Fibers and 3D mesh scaffolds from biodegradable starch-based blends: production and characterization." Macromolecular Bioscience 4(8).
Petford, N., G. Davidson, et al. (1999). "Pore structure determination using confocal scanning laser microscopy." Physics and Chemistry of the Earth, Part A 24(7): 563-567.
Powell, H. and S. Boyce (2006). "EDC cross-linking improves skin substitute strength and stability." Biomaterials 27(34): 5821-5827.
Reneker, D. and I. Chun (1996). "Nanometre diameter fibres of polymer, produced by electrospinning." Nanotechnology 7(3): 216-223.
Riddle, K. and D. Mooney (2004). "Role of poly (lactide-co-glycolide) particle size on gas-foamed scaffolds." Journal of Biomaterials Science, Polymer Edition 15(12): 1561-1570.
Salgado, A., M. Gomes, et al. (2002). "Preliminary study on the adhesion and proliferation of human osteoblasts on starch-based scaffolds." Materials Science & Engineering C 20(1-2): 27-33.
Schoof, H., J. Apel, et al. (2001). "Control of pore structure and size in freeze-dried collagen sponges." Mater Res (Appl Biomater) 58: 352-357.
Silver, F., J. Freeman, et al. (2003). "Collagen self-assembly and the development of tendon mechanical properties." Journal of biomechanics 36(10): 1529-1553.
Tjia, J. and P. Moghe (1998). "Analysis of 3-D microstructure of porous poly (lactide-glycolide) matrices using confocal microscopy." Journal of Biomedical Materials Research 43(3).
Van de Witte, P., P. Dijkstra, et al. (1996). "Phase separation processes in polymer solutions in relation to membrane formation." Journal of membrane science 117(1-2): 1-31.
Vardaxis, N., J. Ruijgrok, et al. (1994). "Chemical and physical properties of collagen implants influence their fate in vivo as evaluated by light and confocal microscopy." Journal of Biomedical Materials Research 28(9).
Yang, F., R. Murugan, et al. (2004). "Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering." Biomaterials 25(10): 1891-1900.
Yannas, I. and J. Burke (1980). "Design of an artificial skin. I. Basic design principles Editor's Note: This article is the first of a six-part series. Additional articles will be forthcoming in subsequent issues of the Journal of Biomedical Materials Research." Journal of Biomedical Materials Research 14(1).
Yannas, I., J. Burke, et al. (1980). "Design of an artificial skin. II. Control of chemical composition." J Biomed Mater Res 14(2): 107-32.
Yannas, I., E. Lee, et al. (1989). "Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin." Proceedings of the National Academy of Sciences 86(3): 933-937.
Yoon, J. and T. Park (2001). "Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts." Journal of Biomedical Materials Research 55(3): 401-408.
Yoshikawa, T., H. Ohgushi, et al. (1996). "Immediate bone forming capability of prefabricated osteogenic hydroxyapatite." Journal of Biomedical Materials Research 32(3).
Yu, J., S. Fridrikh, et al. (2004). "Production of submicrometer diameter fibers by two-fluid electrospinning." Advanced Materials 16(17): 1562-1566.
Zeman, L. and T. Fraser (1993). "Formation of air-cast cellulose acetate membranes. I: Study of macrovoid formation." Journal of membrane science 84(1-2): 93-106.
Zhang, J., L. Wu, et al. (2005). "A comparative study of porous scaffolds with cubic and spherical macropores." Polymer 46(13): 4979-4985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊