跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張世幸
研究生(外文):Shih-Hsin Chang
論文名稱:以混合氫氧基磷灰石之膠原蛋白微粒進行骨組織工程之研究
論文名稱(外文):Application of Hydroxyapatite / Collagen Microsphere in Bone Tissue Engineering
指導教授:王盈錦
指導教授(外文):Yng-Jiin Wang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:180
中文關鍵詞:膠原蛋白微粒氫氧基磷灰石骨組織工程
外文關鍵詞:Collagen MicrosphereHydroxyapatiteBone Tissue Engineering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在整形外科的領域中,常可遇見顏面骨,頭顱骨或四肢骨缺損的患者, 這些骨缺損重建手術對於整形外科醫師,是一項極大的挑戰. 臨床上,骨缺損需進行骨移植或帶血管莖骨皮瓣重建手術,手術醫師需要由另一組織供應區取得相似的組織加以重建。然而如此的整形重建手術患者需兩倍的手術範圍,所冒的風險所受的痛苦也為兩倍,當然發生手術併發症的機會也為兩倍。組織工程(Tissue Engineering)的核心是建立細胞與生物材料的三度空間具有生命力的複合體,用以對缺損組織進行形態、結構和功能的重建並達到永久性替代。骨組織中主要為膠原蛋白及氫氧基磷灰石,過去本實驗室利用乳化法研製出包覆氫氧基磷灰石粉末之膠原蛋白微粒,而骨母細胞於微粒表面上仍能維持良好之增生,並表現出鹼性磷酸酵素(alkaline phosphatase)之活性。微粒型態複合物容易塑形,便於填隙任何形狀不規則之缺陷。本論文的構想即是要利用此類似骨移植之微粒材料模擬臨床上進行骨缺損自體骨移植之手術方式,進行骨組織工程之研究。
本研究將所製成的微粒,做為生長因子的載體或在體外先進行自體骨髓幹細胞培養後,分別於紐西蘭兔動物模型所製造出頭蓋骨缺損中進行骨填補先期實驗,於腸骨位進行大段突出骨骨組織工程的研究,最後於大腿內側進行帶血莖組織工程骨皮瓣的研究。在第三章,我們研究了一個被預先決定形狀的大段組織工程骨(3 cm)的製造,利用一個突出形骨頭的組織工程骨動物模型及自體骨移植模擬物,我們製造了富含微血管網絡之具體3D骨組織。在第四章,我們進一步結合了導引式的骨頭再生技術和自體的血小板濃厚血漿定期注射,在這項研究中,實驗組(C組)顯示比其他組更高的組織工程骨組織(平均鈣化的密度0.95,平均鈣化的區域61.83%) (p< 0.001)。在第五章,我們結合血管束於預先決定形狀的空腔以製造帶血莖組織工程骨皮瓣。間質幹�m胞/Hydroxyapatite/膠原蛋白微粒複合體被置入預先決定形狀的空腔然後以股血管穿越其中。在這項研究中,組織工程骨組織之內可發現廣泛建立的的血管網絡。組織切片可見膠原蛋白微粒開始吸收,周圍的osteoprogenitors和osteoblasts侵入膠原蛋白微粒,並且同時形成新的osteoids。在我們的研究中,在空腔內可發現持續性完全的鈣化,並且在6個月後出現新形成的成熟骨頭組織。這項研究的結果表示, 利用間質幹�m胞/Hydroxyapatite/膠原蛋白微粒綜合體於體內製造帶血莖組織工程骨皮瓣是可行的。
For bone defects of different causes, reconstruction with bone graft or even vascularized bone flaps has become useful clinical modalities. Vascularized bone grafts have their own intrinsic blood supply and can therefore tolerate infection and mechanical loading better than conventional bone grafts and obtain a more rapid union. Recent advances in tissue-engineering techniques have enabled new procedures for bone regeneration that have the potential to evolve the present clinical strategies.
Collagen and (hydroxyl)apatite, the two major components of bone tissue, have been used as the bone substitute materials in orthopedic, oral-maxillo-facial and plastic surgery. In our previous studies, microspheres composed of hydroxyapatite and collagen were developed as the carrier of osteoblasts and growth factors (BMP) to assist bone healing. In this study, more in-depth application of this hydroxyapatite/collagen gel beads system for bone tissue engineering was explored.
From chapter two to four, we reported our studies on the fabrication of large segment tissue engineered bone graft (3 cm) with a predetermined shaped chamber. In chapter three, an animal model of in vivo tissue engineering of a protrusive bone was designed. We used particulate autogenous bone graft mimics that simulated potential clinical needs to create a 3D osseous tissue abundant in bone matrix and osteocytes enclosed in lacunae. Extensive fibrovascular networks were noted interstitially between these biomaterial beads in all parts of chamber. In a study reported in chapter four, we further combined guided bone regeneration technique and intermittent injection of the autologous platelet-rich-plasma into the collagen/ hydroxyapatite gel beads matrices. The specific 3D osseous tissues with fibrovascular network structure from pre-exist bony margin were also successfully created. In this study, the experimental group (group C) had significantly better engineered bone tissue (average calcified density 0.95, average calcified area 61.83%) generated as compared with other groups (p< 0.001).
In chapter five, we reported the results of combining the vascular bundle with large predetermined shape chamber to fabricate a vascularized tissue engineered bone graft. The construct of mesenchymal stem cells/hydroxyapatite/collagen gel bead composites were used. In this study, established extensive patent vascular network within the engineered bone segment was demonstrated. The matrixes had begun to degrade and surrounding osteoprogenitors and osteoblasts invaded the matrix forming new osteoids simultaneously. In our study, continually calcification in the chamber was noted and the newly formed bone tissue was found 6 months after implantation. The results of this study showed that successful in vivo engineering of vascularized tissue-engineered bone grafts is possible.
Table of contents
謝 誌

Abstract

摘要

Chapter 1
General introduction and aims #

Chapter 2
A preliminary study on the in vivo bone formation by bone marrow stromal cells/hydroxyapatite/collagen gel beads #

Chapter 3
In vivo engineering of protrusive bone segments using autogenous bone graft mimics #

Chapter 4
Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma #

Chapter 5
Fabrication of pre-determined shape vascularized bone graft with hydroxyapatite-collagen gel beads and autogenous mesenchymal stem cells composites #

Chapter 6
General conclusions and discussion #
1. A.K. Gosain, L. Song, P. Riordan et al., A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model. Part I. Plast. Reconstr. Surg. 109, 619 (2002).
2. Anselme K, No�ピ B, Flautre B, Blary M-C, Delecourt C, Descamps M, Hardouin P, Association of porous hydroxyapatite and bone marrow cells for bone regeneration. Bone 1999; 25: 51S-54S.
3. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA, Compilcations of iliac crest bone graft harvesting. Clin Orthop 1996; 329: 300-309.
4. Aspenberg P, Jeppsson C, Wang JS, Bostr�卌 M, Transforming growth factor beta and bone morphogenetic protein 2 for bone ingrowth: a comparison using bone chambers in rats. Bone 1996; 19: 499-503.
5. Aubin JE, Liu F, The osteoblast lineage. In:Bilezikian JP, Raisz LG, Rodan GA, eds. Principles of bone biology. San Diego, USA: Academic Press; 1996: 51-67.
6. Aubin JE, Osteogenic cell differentiation. In: Davies JE, ed. Bone Engineering. Toronto, Canada: em square incorporated; 2000: 19-29.
7. Balk ML, Bray J, Day C, Epperly M, Greenberger J, Evans CH, Biyibizi C, Effect of rhBMP-2 on the osteogenic potential of bone marrow stromal cells from an osteogenesis imperfecta mouse (oim). Bone 1997; 21: 7-15.
8. Barnes, M.J. and Farndale, R.W., Collagens and atherosclerosis. Exp. Gerontol., 1999. 34(4): 513-525.
9. Beresford JN, Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop 1989; 240: 270-80.
10. Bianco P, Riminucci M, Gronthos S, Robey PG, Bone marrow stromal cells: nature, biology, and potential applications. Stem Cells 2001; 19: 180-192.
11. Boden SD, Martin GJ, Morone M, Ugbo JL, Titus L, Hutton WC, The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine 1999; 24: 320-327.
12. Boyne PJ, Marx RE, Nevins M, Triplett G, Lazaro E, Lilly LC, Alder M, Nummikoski P, A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periondontics Restorative Dent 1997; 17: 11-25.
13. Brekke JH, Toth JM, Principles of tissue engineering applied to programmable osteogenesis. J Biomed Mater Res 1998; 43: 380-398.
14. Brown KL, Cruess RI, Bone and cartilage transplantation in orthopaedic surgery. J Bone Joint Surg Am 1982; 64: 270-279.
15. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S, The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg 1998; 80-a: 985-996.
16. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S, Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998; 16: 155-162.
17. Buckwater JA, Cooper RR, Bone structure and function. Instr Course Lect 1987; 16: 27-48.
18. Calvert JW, Marra KG, Cook L, Kumta PN, DiMilla PA, Weiss LE, Characterization of osteoblast-like behavior of cultured bone marrow stromal cells on various polymer surfaces. J Biomed Mater Res 2000; 52: 279-
19. Caplan, A.I. Mesenchymal stem cells. J Orthop Res 9, 641, 1991.
20. Caplan, A.I., and Bruder, S.P. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in molecular medicine 7, 259, 2001.
21. Cavallaro, J.F. and Kemp, P.D., Collagen fabrics as biomaterials. Biotechnol. Bioeng., 1994. 43: 781-791.
22. Colen, S. R., Shaw, W. W., and McCarthy, J. G. Review of the morbidity of 300 free flap donor sites. Plast. Reconstr. Surg. 77: 948, 1986.
23. Coombes AGA, Meikle MC, Resorbable synthetic polymers as replacements for bone graft. Clin Mater 1994; 17: 35-67.
24. Coventry MB, Tapper EM, Pelvic instability: a consequence of removing iliac bone for grafting. J Bone Joint Surg Am 1972; 54: 83-101.
25. Cowley SP, Anderson LD, Hernias through donor sites for iliac-bone grafts. J Bone Joint Surg Am 1983; 65: 1023-5.
26. Damien CJ, Parsons JR, Bone graft and bone graft substitutes: A review of current technology and applications. J Appl Biomater 1991; 2: 187-208.
27. de Bruijn JD, van den Brink I, Mendes SC, Dekker R, Bovell YP, van Blitterswijk CA, Bone induction by implants coated with cultured osteogenic bone marrow cells. Adv Dent Res 1999; 13: 74-81.
28. Dennis JE, Haynesworth SE, Young RG, Caplan AI. Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplant. 1992;1(1):23-32.
29. Dennis JE, Konstantakos EK, Arm D, Caplan AI, In vivo osteogenesis assay: a rapid method for quantitative analysis. Biomater 1998; 19: 1323-1328.
30. Dennis JE, Merriam A, Awadallah A, Yoo JU, Johnstone B, Caplan AI, A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res 1999; 14: 700-709.
31. F.Y. Hsu, S.C. Chueh, Y.J. Wang, Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials 20, 1931–1936 (1999).
32. Faucheux C, Ulysse F, Bareille R, Reddi AH, Am�縴�縹 J, Opposing actions of BMP3 and TGF��1 in human bone marrow stromal cell growth and differentiation. Biochem Biophys Res Commun 1997; 241: 787-793.
33. Friedenstein AJ, Chailakhyan RK, Gerasimov UV, Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987; 20: 263-272.
34. Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2(2):83-92.
35. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. Sep 1976;4(5):267-274.
36. Friedenstein, A.J., Latzinik, N.W., Grosheva, A.G., and Gorskaya, U.F. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol 10, 217, 1982.
37. Fromigu�� O, Marie PJ, Lomri A, Bone morphogenetic protein-2 and transforming growth factor-��2 interact to modulate human bone marrow stromal cell proliferation and differentiation. J Cell Biochem 1998; 68: 411-426.
38. G. Merlino, M. Borsetti, M. Boltri, Reverse radial artery bone flap reconstruction of segmental metacarpal losses. J. Hand. Surg. [Br] 32(1), 98–101 (2007).
39. G.M. Crane, S.L. Ishaug, A.G. Mikos, Bone tissue engineering. Nat. Med. 1, 1322–1324 (1995).
40. Gazdag AR, Lane JM, Glaser D, Forster RA, Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 1995; 3: 1-8.
41. Geesink RG, Hoefnagels NH, Bulstra SK, Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br 1999; 81: 710-718.
42. Gentleman E, Lay AN, Dickerson DA, Nauman EA, Dee KC. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials, 2003. 24(21): 3805-3813.
43. Gilbert SF. Developmental Biology. sixth ed: Sinauer Associates, Inc. ; 2000.
44. Goldstein AR, Zhu G, Morris GE, Meszlenyi RK, Mikos AG, Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds. Tissue Eng 1999; 5: 421-433.
45. Gronthos S, Graves SE, Simmons PJ, Isolation, purification and in vitro manipulation of human bone marrow stromal precursor cells. In: Beresford JN, Owen ME, eds. Marrow stromal cell culture. Cambridge, UK: Cambridge University Press; 1998: 26-42.
46. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S Dec 5 2000;97(25):13625-13630.
47. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone. 1992;13(1):81-88.
48. Hellman, K.B., honstead, J.P. and Vincent, C.K., Adventitious agents from animal-derived raw materials and production systems. Dev. Biol. Stand., 1996. 88: 231-234.
49. Herbertson A, Aubin JE, Dexamethasone alters the subpopulation make-up of rat bone marrow stromal cell cultures. J Bone Miner Res 1995; 10: 285-294.
50. Hicok KC, Thomas T, Gori F, Rickard DJ, Spelsberg TC, Riggs BL, Development and characterization of conditionally immortalized osteoblast precursor cell lines from human bone marrow stroma. J Bone Miner Res 1998; 13: 205-217.
51. Ishaug-Riley SL, Crane GM, Gurlek A, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG, Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res 1997; 36: 1-8.
52. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP, Ostegenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997; 64: 295-312.
53. Janicki, J.S. and Brower, G.L., The role of myocardial fibrillar collagen in ventricular remodeling and function. J. Cardiac Fail., 2002. 8(6, Part 2): S319-S325.
54. Kakiuchi M, Ono K, Nishimura A, Shiokawa H. Preparation of bank bone using defatting, freeze-drying and sterilisation with ethylene oxide gas. Part 1. Experimental evaluation of its efficacy and safety. Int Orthop. 1996;20(3):142-146.
55. Kandiyala S, Jaiswal N, Bruder SP, Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng 1997; 3: 173-185.
56. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. Mar 2005;23(3):412-423.
57. Kim KJ, Itoh T, Kotake S, Effects of recombinant human bone morphgenetic protein-2 on human bone marrow cells cultured with various biomaterials. J Biomed Mater Res 1997; 35: 279-285.
58. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R, Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000; 49: 328- 337.
59. Krebsbach PH, Kuznetsov SA, Robey PG, Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 1999; 10: 165-181.
60. Krebsbach PH, Kuznetsov SA, Satomura K, Emmons RVB, Rowe DW, Robey PG, Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 1997; 63: 1059-1069.
61. Kruyt MC, Dhert WJ, Oner C, van Blitterswijk CA, Verbout AJ, de Bruijn JD. Optimization of bone-tissue engineering in goats. J Biomed Mater Res B Appl Biomater. May 15 2004;69(2):113-120.
62. Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG, Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 1997; 12: 1335-1347.
63. Lane JM, Tomin E, Bostrom MPG, Biosynthetic bone grafting. Clin Orthop Rel Resh 1999; 367S: S107- S117.
64. Langer R, Vacanti JP, Tissue engineering. Science 1993; 14: 920-926.
65. Launie, S. W., Kaban, L. B., Mullikin, J. B., and Murray, J. E. Donor-site morbidity after harvesting rib and iliac bone. Plast. Reconstr. Surg. 18: 933, 1987.
66. Laurencin CT, Attawia M, Borden MD, Advancements in tissue engineered bone substitutes. Curr Opinion Orthop 1999; 10: 445-451.
67. Lee HB, Tark KC, Kang SY, Kim SW, Chung YK, Reconstruction of composite metacarpal defects using a fibula free flap. Plast. Reconstr. Surg. 105(4), 1448–1452 (2000).
68. Lee, C.H., Singla, A. and Lee, Y., Biomedical applications of collagen. Intern. J. Pharmac., 2001. 221(1-2): 1-22.
69. Lees, S. and Davidson, C.L., The role of collagen in the elastic properties of calcified tissues. J. Biomech., 1977. 10(8): 473-475.
70. Li J, Habibovic P, Yuan H, et al. Biological performance in goats of a porous titanium alloy-biphasic calcium phosphate composite. Biomaterials. Oct 2007;28(29):4209-4218.
71. Li JP, Habibovic P, van den Doel M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials. Jun 2007;28(18):2810-2820.
72. Lind M, Growth factors: possible new clinical tools. Acta Orthop Scand 1996; 67: 407-417.
73. Liu P, Oyajobi BO, Russell RGG, Scutt A, Regulation of osteogenic differentiation of human bone marrow stromal cells: interaction between transforming growth factor-���nand 1,25(OH)2 vitamin D3 in vitro. Calcif tissue Int 1999; 65: 173-180.
74. Malaval L, Modrowski D, Gupta AK, Aubin JE, Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. J Cell Physiol 1994; 158: 555-572.
75. Maniatopoulos C, Sodek J, Melcher AH, Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 1988; 254: 317-329.
76. Marks SC, Hermey DC. Principles of Bone Biology, edited by Bilezikian JP, Raisz LG, Rodan GA. San Diego, California, USA: Academic Press; 1996.
77. Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE, In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res 1999; 47: 324-335.
78. Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R, Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 1997; 138: 4456-4462.
79. Mendes SC, Reis RL, Bovell YP, Cunha AM, van Blitterswijk CA, de Bruijn JD, Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials 2001; 22: 2057-2064.
80. Mendes, S.C., Sleijster, M., Van Den Muysenberg, A., De Bruijn, J.D., and Van Blitterswijk, C.A. A cultured living bone equivalent enhances bone formation when compared to a cell seeding approach. J Mater Sci Mater Med 13, 575, 2002.
81. Miller, S.C., de Saint-Georges, L., Bowman, B.M., and Jee, W.S. Bone lining cells: structure and function. Scanning microscopy 3, 953, 1989.
82. Moore, J.B., Mazur, J.M., Zehr, D., Davis, P.K., and Zook, E.G. A biomechanical comparison of vascularized and conventional autogenous bone grafts. Plast. Reconstr. Surg. 73, 382, 1984.
83. Muraglia A, Cancedda R, Quarto R, Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Science 2000; 113: 1161-1166.
84. Muschler GF, Boehm C, Easley K, Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg 1997; 79: 1699-1709.
85. Ohgushi H, Okumura M, Osteogenic capacity of rat and human marrow cells in porous ceramics. Acta Orthop Scand 1990; 61: 431-434.
86. Ohgushi H, Okumura M, Tamai S, Shors EC, Caplan AI, Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 1990; 24: 1563-1570.
87. Ohgushi, H., Dohi, Y., Katuda, T., Tamai, S., Tabata, S., and Suwa, Y. In vitro bone formation by rat marrow cell culture. J. Biomed. Mater. Res. 32: 333, 1996.
88. Oikarinen J, Korhonen LK, The bone inductive capacity of various bone transplanting materials used for treatment of experimental bone defects. Clin Orthop 1979; 140: 208-215.
89. Oklund SA, Prolo DJ, Gutierrez RV, King SE, Quantitative comparisons of healing in cranial fresh autografts, frozen autografts and processed autografts, and allografts in canine skull defects. Clin Orthop 1986; 205: 269-291.
90. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. Jan 26 2001;104(2):233-245.
91. Owen M, Marrow stromal stem cells. J Cell Sci Suppl 1988; 10: 63-76.
92. Peter, SJ, Liang CR, Kim DJ, Widmer MS, Mikos AG, Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, ��-glycerophosphate, and L-ascorbic acid. J cell Biochem 1998; 71: 55-62.
93. Petite H, Viateau V, Bensa��d W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G, Tissue-engineered bone regeneration. Nature Biotechnology 2000; 18: 959-963.
94. Pittenger MF, Makay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR, Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-146.
95. Plenz, G.A.M., Deng, M.C., Robenek, H. and Volker, W., Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis, 2003. 166(1): 1-11.
96. Prolo DJ, Rodrigo JJ, Contempory bone graft physiology and surgery. Clin Orthop 1985; 200: 322-342.
97. Puleo DA, Dependence of mesenchymal cell responses on duration of exposure to bone morphogenetic protein-2 in vitro. J Cell Physiol 1997; 173: 93-101.
98. Rickard DJ, Kassem M, Hefferan TE, Sarkar G, Spelsberg TC, Riggs BL, Isolatin and characterization of osteoblast precursor cells from human bone marrow. J Bone Miner Res 1996; 11: 312-324.
99. Ripamonti U, Ramoshebi LN, Matsaba T, Tasker J, Crooks J, Teare J, Bone induction by BMPs/Ops and related family members in primates. J Bone Joint Sur 2001; 83: S116-S127.
100. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials. Jan 1996;17(1):31-35.
101. Rodan GA, Introduction to bone biology. Bone 1992; 13: S3-S6.
102. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. Apr 1986(205):299-308.
103. Solchaga LA, Dennis JE, Goldberg VM, Caplan AI, Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. Orthop Res 1999; 17: 205-213.
104. Spector M. Biomaterial failure. Orthop Clin North Am. Apr 1992;23(2):211-217.
105. Stockdale FE. The myogenic lineage: evidence for multiple cellular precursors during avian limb development. Proc Soc Exp Biol Med. Jun 1990;194(2):71-75.
106. Sumner DR, Turner TM, Purchio AF, Gombotz WR, Urban RM, Galante JO, Enhancement of bone ingrowth by transforming growth factor-beta. J bone Joint Surg Am 1995; 77: 1135-1147.
107. Takiguchi T, Kobayashi M, Suzuki R, Yamaguchi A, Isatsu K, Nishihara T, Nagumo M, Hasegawa K, Recombinant human bone morphohenetic protein-2 stimulates osteoblast differentiation and suppresses matrix metalloproteinase-1 production in human bone cells isolated from mandibulea. J Periodont Res 1998; 33: 476-485.
108. Tamai N, Myoui A, Tomita T et al., Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J. Biomed. Mater. Res. 59, 110 (2002).
109. Tay BK, Patel VV, Bradford DS. Calcium sulfate- and calcium phosphatebased bone substitutes. Mimicry of the mineral phase of bone. Orthop Clin North Am. Oct 1999;30(4):615-623.
110. Tengvall P, Lundstrom I. Physico-chemical considerations of titanium as a biomaterial. Clin Mater. 1992;9(2):115-134.
111. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG, Fabrication of biodegradable scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 1995; 7: 23-38.
112. Tzaphlidou, M., The role of collagen and elastin in aged skin: an image processing approach. Micron, 2004. 35(3): 173-177.
113. Urisrt MR, DeLange RJ, Finerman GA, Bone cell differentiation and growth factors. Science 1983; 220: 680-686.
114. Urist MR, Bone: formation by autoinduction. Science 1965; 150: 893-899.
115. Vouyouka, A.G., Pfeiffer, B.J., Liem, T.K., Taylor, T.A., Mudaliar, J. and Phillips, C.L., The role of type I collagen in aortic wall strength with a homotrimeric [[α]1(I)]3 collagen mouse model. J. Vasc. Surg., 2001. 33(6): 1263-1270.
116. Wahl DA, Sachlos E, Liu CE, Czernuszka JT, Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 18(2), 201–209 (2007).
117. Wang, X., Bank, R.A., TeKoppele, J.M. and Mauli Agrawal, C., The role of collagen in determining bone mechanical properties. J. Orthop. Res., 2001. 19(6): 1021-1026.
118. Weng Y, Cao Y, Silva CA, Vacanti MP, Vacanti CA, Tissue-engineered composites of bone and cartilage for mandible condylar reconstruction. J. Oral Maxillofac. Surg. 59, 185 (2001).
119. Whang K, Healy KE, Elenz DR, Nam EK, Tsai DC, Thomas CH, Nuber GW, Glorieux FH, Travers R, Sprague SM, Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 1999; 5: 35-51.
120. Whang K, Tsai DC, Aitken M, Sprague SM, Patel P, Healy KE, Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res 1998; 42: 491-499.
121. Wikesj�� UME, Sorenson RG, Wozney JM, Augmentation of alveolar bone and dental implant osseointegration: clinical implications of studies with rhBMP-2. J Bone Joint Sur 2001; 83: S136-S145.
122. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG, Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 1996; 17: 175-185.
123. Yoshikawa T, Ohgishi H, Nakajima H, Yamada E, Ichijima K, Tamai S, Ohta T, In vivo osteogenic durability of cultured bone in porous ceramics. Transplantation 2000; 69: 128-134.
124. Yoshikawa T, Ohgushi H, Tamai S, Immediate bone forming capability of prefabricated osteogenic hydroxyapatite. J Biomed Mater Res 1996; 32: 481-492.
125. Younger EM, Chapman MW, Morbidity at bone graft donor sites. J Orthop Trauma 1989; 3: 192-195.
126. Yuan H, de Bruijn JD, Zhang X, van Blitterswijk CA, de Groot , Bone induction by porous glass ceramic made from bioglass �_�n(45S5). J Biom Mater Res 2001; 58: 270-276.
127. Yuan H, van Blitterswijk CA, de Groot K, de Bruijn JD. A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. J Biomed Mater Res A. Jul 2006;78(1):139-147.
128. Yuan H, Yang Z, Li Y, Zhang X, De Bruijn JD, De Groot K. Osteoinduction by calcium phosphate biomaterials. J Mater Sci Mater Med. Dec 1998;9(12):723-726.
129. Zellin G, Linde A, Effects of recombinant human fibroblast growth factor-2 on osteogenic cell populations during orthotopic osteogenesis in vivo. Bone 2000; 26: 161-168
130. Zhang YQ, Kritzik M, Sarvetnick N. Identification and expansion of pancreatic stem/progenitor cells. J Cell Mol Med. Apr-Jun 2005;9(2):331-344.
131. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. Dec 2002;13(12):4279-4295.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊