跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄒志翔
研究生(外文):Chih-Hsiang Tsou
論文名稱:麻醉誘導過程中所產生之呵欠-心率變異度與心肺同調性之探討
論文名稱(外文):The Study of the Effect of Propofol-induced Yawning on Heart Rate Variability and Coherence Analysis between Cardiovascular and Respiratory Systems
指導教授:高材高材引用關係
指導教授(外文):Tsair Kao
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:麻醉誘導呵欠心率變異度同調性
外文關鍵詞:anesthetics inductionyawningheart rate variabilitycoherence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
打呵欠(yawning),其生理意義至今並不清楚,種種文獻皆顯示打呵欠似乎與自主神經系統活性有關。手術前麻醉誘導過程當中,發生麻醉藥物誘發呵欠之發生比例不低。而此麻醉藥物誘發之呵欠與自主神經系統活性間之互動機制的相關文獻則闕如。近年來心率變異度分析已被廣泛接受為一項非侵入性量化自主神經活性的評估工具,所以本論文使用心率變異度分析來評估麻醉藥物propofol在麻醉誘導過程中產生呵欠時之心率自主神經調控狀況。另一方面,呼吸與心血管系統之間的交互作用(interaction)與自主神經功能也有密切的關聯,此交互作用同時也可以做為麻醉深度的指標。心肺同調性 (coherence) 即是此種交互作用的生理指標之一,本研究採用同調性分析,來探討propofol麻醉誘導產生呵欠時的心肺交互作用。
以往大多數的心率變異度研究都是以快速傅立葉轉換頻譜分析為基礎,來探討研究現象之心率變異頻譜特性與自主神經活性之間關聯性。但是對於快速變化的生理訊號,使用快速傅立葉轉換頻譜分析有其侷限性。在本論文中針對麻醉過程中快速變化的生理訊號(心率),本論文以平滑式魏格納-韋立分佈時頻分析法(smoothed pseudo Wigner-Ville distribution; SPWVD)為基礎,分析麻醉前、中、後受試者之心率變異度之頻譜特性,發現在propofol麻醉誘導過程中,受試者心率變異度中之低頻頻譜能量(LF)與高頻頻譜能量(HF)均呈現大幅減少的現象;另外在低頻頻譜能量相對於高頻頻譜能量(LF/HF)之比值則有明顯增加,這意味propofol麻醉誘導過程會大幅降低心率變異的強度,但是同時可能使得交感神經活性增加。在產生呵欠這組,其LF/HF、LF、正規化低頻頻譜能量(LFn)皆隨著打呵欠而明顯增加,在此同時其正規化高頻頻譜能量(HFn)卻呈現減少的趨勢,也顯示呵欠本身可能會誘發更明顯的心率變化,產生更顯著的交感神經活化而造成頻譜特性的改變。
本論文以時頻分佈之同調性分析為基礎,探討麻醉誘導產生呵欠時不同頻寬之心肺交互作用。結果顯示麻醉誘導會造成呼吸頻率變慢;全頻(0-0.5Hz)與高頻(0.15-0.5Hz)的同調性顯著減少,同時低頻(0.04-0.15Hz) 與非常低頻(0-0.04Hz)的同調性增加。若就propofol誘導產生呵欠來看,其在低頻與非常低頻同調性會較未產生呵欠組明顯增加。另一方面,麻醉誘導會使高頻區心肺交互作用線性關係存在之時間比例減少,同時低頻與非常低頻區的線性關係存在之時間比例增加,而麻醉誘導產生呵欠則會使得低頻與非常低頻區在線性關係存之時間比例更明顯增加。
總結言之,本研究以時頻分佈之分析方式探討麻醉誘導產生呵欠時之心率變異度與心肺同調性,結果發現麻醉誘導產生呵欠會改變心率變異頻譜特性使得LF/HF明顯增加,同時使得心肺交互作用之線性關係改變。
The physiological meaning of yawning is not clear. Literatures revealed that yawning may be associated with the activity of autonomic nervous system. Anestheticsl-induced yawning is not uncommon. However, little is known about the link between anesthetics-induced yawning and activity of autonomic nervous system. Heart rate variability (HRV) has been widely used as a noninvasive probe for quantification of the activity of autonomic nervous system. So in this dissertation, HRV study was used to investigate the cardiac-autonomic control during propofol (one kind of anesthetics)-induced yawning. Besides, there is close link between cardiac-pulmonary interaction and autonomic function. This kind of cardiac-pulmonary interaction could also be used as an indicator of anesthesia depth. One kind of parameters for cardiac-pulmonary interaction is coherence. In this study, coherence analysis was used to investigate the cardiac-pulmonary interaction during propofol-induced yawning.
Many studies used spectral analysis of HRV with fast Fourier transform (FFT) method as a probe to investigate the cardiac-autonomic control in different clinical conditions. However, there is limitation about the spectral analysis with FFT for processing of non-stationary biosignals. In recent days, instead of FFT, time-frequency domain analysis of HRV has been developed for the sake of dealing with the non-stationary biosignals in clinical conditions such as anesthesia. In this dissertation, the method of smoothed pseudo Wigner-Ville distribution (SPWVD) was used to analyze the characteristics of spectral components of HRV during propofol induction. The results revealed that significant reduction of low-frequency and high-frequency power of HRV with significant elevation of the ratio of low-frequency power to high frequency power (LF/HF) during propofol induction. Significant elevations of LF/HF and normalized low-frequency power (LFn) with marked reduction of normalized high-frequency power (HFn) of HRV were also noted during propofol-induced yawning as compared with non-yawning group. From the above results, we might infer that sympatho-vagal imbalance towards sympathetic activation occurred during propofol-induced yawning.
Under the consideration of rapid changing characteristics of biosignals during anesthesia, we applied time-frequency coherence analysis to investigate the cardiopulmonary interaction in different frequency bands during propofol-induced yawning. The results revealed significant decreases of breathing frequency, total- (0-0.5Hz) and high-frequency (0.15-0.5Hz) cardiopulmonary coherences with significant increases of low- (0.04-0.15Hz) and very low-frequency (0-0.04Hz) coherences during anesthesia induction. Significant increases of low- and very low-frequency coherences were also noted during propofol-induced yawning. Besides, decreased percentage of time interval for high-frequency coherence greater than 0.5 and increased percentages of time interval for low-frequency and very low-frequency coherences greater than 0.5 were also noted during anesthetics induction. Significantly increased percentages of time interval for low-frequency and for very low-frequency coherences greater than 0.5 were also noted in yawning group.
In conclusion, the study investigated the cardiac-autonomic control and the cardiac-pulmonary interaction with time-frequency distribution methods of HRV and coherence analysis during propofol-induced yawning. Significant increase of LF/HF of HRV was noted during propofol-induced yawning. Besides, significant changes of linear correlation between cardiovascular and respiratory systems were also associated with propofol-induced yawning.
第一章 緒論
1.1 麻醉誘導過程中產生之呵欠與自主神經系統
1.2 心率調控與自主神經系統作用
1.3 麻醉藥物與心率變異度分析
1.4 呼吸與心率變異之交互作用
1.5 研究動機
1.6 論文概要

第二章 方法
2.1 研究設計
2.2 心率變異度分析
2.3 心肺同調性分析
2.4 資料分析與統計

第三章 實驗結果
3.1 心率變異度分析
3.2 心肺同調性分析

第四章 討論
4.1 心率變異度分析
4.2 同調性分析

第五章 結論與未來展望
5.1 結論
5.2 未來展望
參考文獻
1. Askenasy JJ. Is yawning an arousal defense reflex? J Psychol 1989;123:609-21.
2. Gower AJ, Berendsen HHG, Broekkamp CL. Antagonism of drug-induced yawning and penile erections in rats. Eur J Pharmacol 1986;122:239-44.
3. Melis MR, Succu S, Iannucci U, Argiolas A. Prevention by morphine of apomorphine- and oxytocin-induced penile erection and yawning: involvement of nitric oxide. Naunyn Schmiedebergs Arch Pharmacol 1997;355:595-600.
4. Gallup AC, Gallup GC. Yawning and thermoregulation. Physiol Behav 2008; 95:10-16.
5. Schiller F. Yawning? J History Neurosciences 2002;11: 392 – 401.
6. Urba-Holmgren R, Holmgren B, Leon BA, Ugarte A. Age-dependent changes in serotonergic modulation of yawning in the rat. Pharmacol Biochem Behav 1992;43:483-6.
7. Petrikovsky B, Kaplan G, Holsten N. Fetal yawning activity in normal and high-risk fetuses: a preliminary observation. Ultrasound Obstet Gynecol 1999;13:127-30.
8. Melis MR, Argiolas A. Reduction of drug-induced yawning and penile erection and of noncontact erections in male rats by the activation of GABAA receptors in the paraventricular nucleus: involvement of nitric oxide. Eur J Neurosci 2002;15:852-60.
9. Kita I, Sato-Suzuki I, Oguri M, Arita H. Yawning responses induced by local hypoxia in the paraventricular nucleus of the rat. Behav Brain Res 2000;117:119-26.
10. Sato-Suzuki I, Kita I, Oguri M, Arita H. Stereotyped yawning responses induced by electrical and chemical stimulation of paraventricular nucleus of the rat. J Neurophysiol 1998;80:2765-75.
11. Argiolas A, Melis MR. The neuropharmacology of yawning. Eur J Pharmacol 1998;343:1-16.
12. Doger, E, Urba-Holmgren R, Eguibar JR, Holmgren B. GABAergic modulation of yawning behavior. Pharmacol Biochem Behav 1989;34:237-40.
13. Postert T, Pohlau D, Meves S, Nastos I, Przuntek H. Pathological yawning as a symptom of multiple sclerosis. J Neurol 1996;243:300-1.
14. Williams DR. The yawning reflex: an upper motor neuron sign in amyotrophic lateral sclerosis. Neurology 2000;55:1592-3.
15. Gallup AC, Gallup GC. Medical implications of excessive yawning in relation to thermoregulatory dysfunction. Eur J Neurol 2009;16: e120.
16. Urba-Holmgren R, Gonzalez RM, Holmgren B. Is yawning a cholinergic response? Nature 1977;267:261-2.
17. Lobo LL, DE Medeiros R, Hipolide DC, Tufik S. Atropine increases pilocarpine-induced yawning behavior in paradoxical sleep deprived rats. Pharmacol Biochem Behav 1995;52:485-8.
18. Skorzewska A, Tesfaye Y, Krishnan B, Schwartz G, Thavundayil J, Lal S. Effect of scopolamine on spontaneous yawning in men. Neuropsychobiol 1993;27:17-20.
19. Ogura H, Kosasa T, Kuriya Y, Yamanishi Y. Central and peripheral activity of cholinesterase inhibitors as revealed by yawning and fasciculation in rats. Eur J Pharmacol 2001;415:157-64.
20. Askenasy JJ, Askenasy N. Inhibition of muscle sympathetic nerve activity during yawning. Clin Auton Res 1996;6:237-9.
21. Kim DW, Kil HY, White PF. Relationship between clinical endpoints for induction of anesthesia and bispectral index and effect-site concentration values. J Clin Anesth 2002;14:241-5.
22. Kasuya Y, Murakami T, Oshima T, Dohi S. Does yawning represent a transient-arousal during intravenous induction of general anesthesia ? Anesth Analg 2005;100:382–4.
23. Luk HN, Tsou CH, Kao T. Clinical Study of anesthetics-induced yawning by AEP, rSO2 and HRV. Anesthesiology 2004; 101: A317
24. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 1981;213:220-2.
25. Task force of the European Society of Cardiology and the North American Society of acing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996;93:1043-65.
26. Novak P, Novak V. Time-frequency mapping of the heart rate, blood pressure and respiratory signals. Med Biol Eng Comput 1993;31:103-10.
27. Huang HH, Chan HL, Lin PL, Wu CP, Huang CH. Time-frequency spectral analysis of heart rate variability during induction of general anaesthesia. Br J Anaesth 1997; 9:754-8.
28. Mansier P, Jean C, Nathalie C, Claire M, Christophe V, Gilles L, Athanassia G. Linear and non-linear analyses of heart rate variability: a minireview. Cardiovas Res 1996; 31: 371-9.
29. Galletly DC, Buckley DH, Robinson BJ, Corfiatis T. Heart rate variability during propofol anaesthesia. Br J Anaesth 1994;72:219-20.
30. Howell SJ, Wanigasekera V, Young JD, Gavaghan D, Sear JW, Garrard CS. Effects of propofol and thiopentone, and benzodiazepine premedication on heart rate variability measured by spectral analysis. Br J Anaesth 1995;74:168-73.
31. Kanaya N, Hirata N, Kurosawa S, Nakayama M, Namiki A. Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology 2003;98:34-40.
32. Hayano J, Yasuma F, Okada A, Mukai S, Fujinami T. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation 1996;94:842-7.
33. Hayano J, Yasuma F. Hypothesis: respiratory sinus arrhythmia is an intrinsic resting function of cardiopulmonary system. Cardiovasc Res 2003;58: 1–9.
34. Lovett EG, Ropella KM. Time-frequency coherence analysis of atrial fibrillation termination during procainamide administration. Ann Biomed Eng 1997;25:975-84.
35. Leung RS, Bowman ME, Diep TM, Lorenzi-Filho G, Floras JS, Bradley TD. Influence of Cheyne-Stokes respiration on ventricular response to atrial fibrillation in heart failure. J Appl Physiol. 2005;99:1689-96.
36. Zwiener U, Schelenz CH, Bramer S, Hoyer D. Short-term dynamics of coherence between respiratory movements, heart rate, and arterial pressure fluctuations in severe acute brain disorders. Physiol. Res. 2003; 52: 517-24.
37. Introna R, Yodlowski E, Pruett J, Montano N, Porta A, Crumrine R. Sympathovagal effects of spinal anesthesia assessed by heart rate variability analysis. Anesth Analg. 1995;80:315-21.
38. Scheffer GJ, Voorde BJT, Karemaker JM, Ros HH, Lange JJD. Effect of thiopentone, etomidate and propofoll on beat-to-beat cardiovascular signals in man. Anesthesia 1993; 48: 849-55.
39. Ireland M, Meagher JW, Sleigh JW, Henderson JD. Heart rate variability in patients recovering from general anesthesia. Br J Anaesth. 1996; 76:657-62.
40. Pereira de Souza Neto E, Custaud MA, Frutoso J, Somody L, Gharib C, Fortrat JO. Smoothed pseudo Wigner-Ville distribution as an alternative to Fourier transform in rats. Auton Neurosci. 2001;87:258-67.
41. Eckberg DL. Human sinus arrhythmia as an index of vagal cardiac outflow. J Appl Physol 1984;54:961-6.
42. Pöyhönen M, Syväoja S, Hartikainen J, Ruokonen E, Takala J. The effect of carbon dioxide, respiratory rate and tidal volume on human heart rate variability. Acta Anaesthesiol Scand. 2004 Jan;48(1):93-101.
43. Hayano J, Mukai S, Sakakibara M, Okada A, Takata K, Fujinami T. Effects of respiratory interval on vagal modulation of heart rate. Am J Physiol 1994;267:H33-40.
44. Strauss-Blasche G, Moser M, Voica M, McLeod DR, Klammer N, Marktl W. Relative timing of inspiration and expiration affects respiratory sinus arrhythmia. Clin Exp Pharmacol Physiol. 2000;27:601-6.
45. Leung RS, Floras JS., Lorenzi-Filho G, Rankin F, Picton P, Bradley TD. Influence of Cheyene-Stokes respiration on cardiovascular oscillation in heart failure. Am J Respir Crit Care Med 2003;167: 1534–9.
46. Eckberg DL, Nerhed C, Wallin BG. Respiratory modulation of muscle sympathetic and vagal cardiac outflow in man. J physiol 1985;365:181-96.
47. Eckberg DL. The human respiratory gate. J Physiol 2003; 548.2:339–52.
48. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol. 1991;261:H1231-45.
49. Vaschillo E, Vaschillo B, Lehrer P. Heartbeat synchronizes with respiratory rhythm only under specific circumstances. Chest. 2004;126:1385-6
50. Yasuma F, Hayano J. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 2004 ;125:683-90.
51. Giardino ND, Glenny RW, Borson S, Chan L. Respiratory sinus arrhythmia is associated with efficiency of pulmonary gas exchange in healthy humans. Am J Physiol 2003; 284: H1585–91.
52. Barbieri R, Triedman JK, Saul JP. Heart rate control and mechanical cardiopulmonary coupling to assess central volume: a system analysis. Am J Physiol 2002; 283: R1210–20
53. Giardino ND, Chan L, Borson S. Combined heart rate variability and pulse oximetry biofeedback for chronic obstructive pulmonary disease: preliminary findings. : Appl Psychophysiol Biofeedback. 2004 ;29:121-33.
54. Pomfrett CJ, Barrie JR, Healy TE. Respiratory sinus arrhythmia: an index of light anaesthesia. Br J Anaesth. 1993;71:212-7.
55. Wang DY, Pomfrett CJ, Healy TE. Respiratory sinus arrhythmia: a new, objective sedation score. Br J Anaesth. 1993 ;71:354-8
56. Galletly DC, Larsen PD. Cardioventilatory coupling during anaesthesia. Br J Anaesth. 1997;79:35-40.
57. Kluge KA, Harper RM, Schechtman VL, Wilson AJ, Hoffman HJ, Southall DP. Spectral analysis assessment of respiratory sinus arrhythmia in normal infants and infants who subsequently died of sudden infant death syndrome. Pediatr Res. 1988;24:677-82.
58. Lipsitz LA, Hayano J, Sakata S, Okada A, Morin RJ. Complex demodulation of cardiorespiratory dynamics preceding vasovagal syncope. Circulation. 1998;98:977-83.
59. Suzuki M, Hori S, Nakamura I, Nagata S, Tomita Y, Aikawa N. Role of vagal control in vasovagal syncope. Pacing Clin Electrophysiol. 2003;26:571-8.
60. Fujiwara Y, Komatsu T, Kimura T, Kawase M, Nishiwaki K, Shimada Y. Transfer function analysis of the circulation in patients undergoing sevoflurane anesthesia. Can J Anaesth. 1999;46:820-6.
61. Keissar K, Davrath LR, Akselrod S. Coherence analysis between respiration and heart rate variability using continuous wavelet transform. Philos Transact A Math Phys Eng Sci. 2009;367:1393-406.
62. Guggisberg AG, Mathis J, Herrmann US, Hess CW. The functional relationship between yawning and vigilance. Behav Brain Res. 2007;179:159-66.
63. Oshima T, Utsunomiya H, Kasuya Y, Sugimoto J, Maruyama K, Dohi S. Identification of independent predictors for intravenous thiopental-induced yawning. J Anesth. 2007;21:131-5.
64. Miu AC, Heilman RM, Miclea M. Reduced heart rate variability and vagal tone in anxiety: trait versus state, and the effects of autogenic training. Auton Neurosci. 2009;145:99-103.
65. Taylor JA, Carr DL, Myers CW, Eckberg DL. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation. 1998;98:547-55.
66. Bonaduce D, Marciano F, Petretta M, Migaux ML, Morgano G, bianchi C, Salemme L, Valva G, Condorelli M. Effects of converting enzyme inhibition on heart period variability in patients with acute myocardial infarction. Circulation 1994;90:108-13
67. Saul JP, Arai Y, Berger RD, Lilly LS, Colucci WS, Cohen RJ. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol. 1988;61:1292–9.
68. Szollosi I, Krum H, Kaye D, Naughton MT. Sleep apnea in heart failure increases heart rate variability and sympathetic dominance. Sleep 2007;30:1509-14.
69. Peng CK, Henry IC, Mietus JE, Hausdorff JM, Khalsa G, Benson H, Goldberger AL. Heart rate dynamics during three forms of meditation. Int J Cardiol. 2004 ;95:19-27.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top