跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周政瑩
研究生(外文):Jheng-Ying Jhou
論文名稱:Gamma射線處理對超高分子量聚乙烯之結晶與非結晶區之氧化機制與自由基反應研究
論文名稱(外文):The effects of gamma-ray irradiation on the oxidation mechanism and free radical reaction of crystalline and amorphous regions of Ultra High Molecular Weight Polyethylene
指導教授:蔡瑞瑩
指導教授(外文):Ruey-Yug Tsay
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:94
中文關鍵詞:超高分子量聚乙烯自由基
外文關鍵詞:UHMWPEfree radical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人工關節中的超高分子量聚乙烯元件的磨耗問題,是置換手術失敗的主要原因,而造成磨耗增加之主因與材料經Gamma射線照射滅菌殘留自由基而造成加速氧化之效應直接相關。本研究使用電子自旋光譜儀(EPR)與傅立葉轉換紅外線光譜儀(FTIR),探討不同結晶度材料經照射後,自由基的生成及後續之反應機構。EPR部分,由動態自由基衰退曲線之迴歸分析顯示gamma射線誘發之自由基反應可以用平行二階反應模型,來適切的描述不同結晶度材料在真空及有氧環境下之衰退行為。結果顯示,改變其結晶度在照射後所有自由基之絕對濃度隨時間均呈下降趨勢,提高溫度,下降速率加劇,同時在檢測時間範圍內,不同形式自由基之濃度百分比漸趨定值。而UHMWPE及HDPE原料,其照射前結晶度高之材料,經定溫下退火後,含不飽和鍵自由基與飽和自由基之比值;即[Allyl+Polyenyl]/[Alkyl]自由基濃度比,較高。在FTIR部分,結果顯示經交聯處理後,C=C含量依序為:trans-vinylene > vinyl > vinyldene > trans-trans-vinylene。vinyldene及trans-trans-vinylene在GUR1020(Quench)、GUR1020、HDPE中不論交聯時間或是老化時間的增加或者改變交聯溫度、老化溫度,皆無明顯的改變。trans-vinylene之生成似乎是主要受到gamma射線照射産生之自由基反應主導,而非原料中原有之C=C轉移而來,相較其他形式之C=C,此形態之雙鍵相當不穩定,易受到交聯及老化處理條件之影響。本研究之結果,可作為設計交聯製程,避免長效性自由基殘留,提升材料穩定性之參考。
The wear of UHMWPE is the major cause for the failure of joint artheroplasty. It is known that the oxidation accelerated by residual free radicals induced by gamma irradiation is the main cause for the increase of wear rate. In this work, EPR and FTIR spectroscopy were applied to study the formation and the subsequent reactions of the free radical induced by gamma irradiation for Polyethylene materials with various crystallinity. Theoretical analysis on the dynamic curves of free radical decay obtained by EPR measurements suggests that the reaction kinetics of free radical decay in vacuum or in air for the gamma irradiated PE with different degree of crystallinity can be well described by a parallel second order model proposed in our lab. It also showed that regardless to its crystallinity, the absolute concentrations of various types of free radical all decrease with time. The decay rate increases with the increase of temperature. Also, the percentages of different type of free radicals gradually reach to a constant level. For both of the UHMWPE and HDPE materials, the final equilibrium concentration ratio of the free radicals with unsaturated C=C to radicals without unsaturated C=C, i.e. [allyl+polyenyl radical]/[alkyl radical]3, is higher for PE with higher crystallinity before gamma irradiation. The results of FTIR spectroscopy reveal that after annealing , the residue level of various C=C in order is: trans-vinylene > vinyl > vinyldene > trans-trans-vinylene. Among them, the concentrations of vinyldene and trans-trans- vinylene in GUR1020 (Quench) , GUR1020 and HDPE show no apparent changes with the changes of annealing/aging time and annealing/aging temperature. The formation of trans-vinylene seems to be mainly dominated by gamma ray irradiation and not transformed from the C=C present in the virgin materials. Compared to the other types of C=C, trans-vinylene is rather unstable during the annealing and aging process. The results obtained herein can be implemented to design a cross-linking process which is able to avoid the formation of long-life residue free radical and to ensure better long- term stability.
中文摘要…………………………………………………………… Ι
英文摘要…………………………………………………………… II
目錄. …………………………………………………………….. IV
表索引……………………………………………………………. VI
圖索引… ………………………………………………………… VII
第一章 緒論………………………………………………….… 1
1.1 研究背景…………………………………………………… 1
1.2 基本介紹…………………………………………………… 2
1.2.1 Gamma射線滅菌及交聯處理之原理…………………….. 2
1.2.2電子自旋光譜的基本原理………………………………… 4
1.3 Gamma射線滅菌對PE材料的效應………………………….. 6
1.3.1自由基生成………………………………………………… 6
1.4材料老化對PE之效應………..................... 8
1.5 研究目的…………………………………………………….. 12
第二章 實驗材料與裝置…………………………. .........13
2.1實驗材料與儀器設備………………………………………... 13
2.2試樣的尺寸與性質…………………………………………... 14
第三章 實驗方法………………………………………………. 15
3.1 理論分析…………………………………………………… 15
3.1.1自由基衰退機制分析……………………………………… 15
3.1.2 自由基形態分析………………………………………... 17
3.2 自由基衰退測量-EPR……………………………………... 18
3.3 實驗設計………………………………………………….. 19
3.3.1 氧化度及碳碳雙鍵測試-FTIR…………………………. 19
3.3.2 結晶度測試-DSC…………………………………………. 20
第四章 結果與討論……………………………………………. 21
4.1 不同結晶度材料控制……………………………………….. 21
4.2 自由基衰退機制之探討…………………………………….. 22
4.2.1典型一階、二階及修正二階反應機制模擬………...... 22
4.2.2 平行二階反應機制模擬………………………………... 24
4.2.3 利用EPR光譜分析討論自由基之型態變化………….. 24
4.3氧化度及碳碳雙鍵測試……………………………………... 27
第五章 結論……………………………………………………. 30
第六章 參考文獻………………………………………………. 32
附表………………………………………………………………. 34
附圖………………………………………………………………. 36
附錄A………………………………………………………………. 65
(1)所有原料之DSC譜線疊圖…………………………………... 65
(2)FTIR光譜疊圖………………………………………………... 66
附錄B所有原料在不同溫度下之自由基總濃度動態衰退曲線圖. 68
附錄C所有原料在不同溫度下之衰退圖譜………………………. 73
[1] ASTM D3417-99
[2] ASTM D3418-99
[3] ASTM F2101-02
[4] Biggin,H. C.,Irradiation Effects on Polymers, ed by Clegg, D. W., and Collyer, A.A., London, Elsevier Applied Science, 1991.
[5] Buchanan,F.J.,Sim,B.,and Downes,S,Biomaterials,1999, v.20,p.823-837.
[6] Christopher,F.C.,Hamilton,J.V.,McGimpsey,W.G.and Thompson,R.W.,Polymer Science,2000,v.77,p.2525-2542
[7] Goldman,M.,Gronsky,R.,and Pruitt,L.,Polymer,1996, v.37,No.14, p.2909-2913.
[8] Jahan,M.S.and McKinny,K.S.,Nuclear Instruments and Methods in Physics Research B,1999,v.151,p.207-212
[9] Lebedev YS,kinet ,katailiz,1967,v.8, p.245.
[10] Nakamura,K.,Ogata,S.and Ikada,Y.,Biomaterials,1998, v.19,p.2341–2346
[11] Oonishi,S.H.,Sugimoto,S.I., and Nitta,I.,Journal of polymer science,1963,v.1,p.605-623.
[12] O’Neill,P.,Birkinshaw,C.,Leahy,J.J.,and Barklie,R., Polymer Degradation and Stability,1999,v.63,p.31-39.
[13] Premnath,V.,Harris,W.H.,Jasty,M.,and Merrill,E.W., Biomaterials,1996,v.17,p.1741-1753.
[14] Seguchi,T., and Tamura,N., Rpe. Progr. Polym. Phys.Japan, 1969,v.12,p.489.
[15]Steven M. Kurtz, Orhun K. Muratoglu, Mark Evans, Avram
A.,Biomaterials,1999,v.20,p.1659-1688
[16]Wen,W.Y.,Johnson,D.R,and Dole,M.,J.Phys.Chem.,1974,v. 78,p.1798.
[17]Young,T.H.,Cheng,C.K.,Lee,Y.M.,Chen,L.Y.,and Huang, C.H.,Biomedical Material Research,1999,v.48,p.159-164
[18]Young, T.H., Cheng, C.K., Lee, Y.M., Chen, L.Y., and Huang, C.H., Biomedical Material Research,1999,v.48,p.159-164
[19]Yeom, B., Yu, Y. J., Mckellop H. A. and Salovey, R., Polymer Science: Part A: Polymer Chemistry,1998,v.36,p.329-339
[20]翁偉銘,人工關節用超高分子量聚乙烯材料之Gamma射線照射
改質效應研究 ,陽明大學碩士論文,2003
[21]廖顯煌, Gamma 射線照射人工關節超高分子量聚乙烯產生之自
由基之交聯改值反應機制之研究,陽明大學碩士論文,2004.
[22]林桂君, Gamma射線照射處理之超高分子量聚乙烯材料氧化機制
探討,陽明大學碩士論文,2005.
[23]邱國評, Gamma射線照射之超高分子量聚乙烯自由基反應效應研
究,陽明大學碩士論文,2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊