跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 03:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林筑君
研究生(外文):Chu-Chun Lin
論文名稱:非熱大氣電漿系統放電及滅菌效應探討
論文名稱(外文):The discharging and sterilization properties of non-thermal atmospheric plasma system
指導教授:蔡瑞瑩
指導教授(外文):Ruey-Yug Tsay
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:72
中文關鍵詞:非熱電漿放電特性滅菌
外文關鍵詞:Non-thermal Plasmadischarge propertiesSterilization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
滅菌處理在各種應用於體內、外之醫材製程為不可或缺的一環。發展低成本、低污染、快速有效且不傷材料之滅菌法為現今趨勢。不同材料有其適用之滅菌方法,傳統高溫滅菌法不適用於熱敏感材料之處理。本研究針對非熱大氣電漿應用於生醫器材滅菌之效應進行探討。首先對非熱大氣電漿裝置進行測試,調控其相關操作參數,觀測其放電特性,由放電功率和匹配效率作為選定合適操作參數設定值之參考,分析各項相關操作參數對電漿產生效率及其滅菌效率的影響。
本研究所使用氣體電漿產生系統為DBD結合高電壓下Corona放電之型式。本研究針對各系統調控參數分析之結果顯示電極構形、操作電壓、頻率及氣體組成等參數為影響放電特性之重要參數。而間距大小、氣體流量、溼度高低等參數則對放電性質之影響較不顯著。考量放電功率、匹配效率、電漿均勻度及可操作空間大小等因素,本研究確認在放電間距5mm、頻率300 Hz、電壓90V(15KV/220V)條件下,系統俱有足夠強度放電功率、高匹配效率、適當均勻度及操作空間,故選定作為後續之滅菌效應測試操作參數設定值。
本研究依據放電特性測試之結果,在選定之最適操作條件下,針對載有3×106CFU Bacillus pumilus ATCC 27142孢子之市售生物指示劑,以滅菌後培養之濁度變化;及遵照ASTM E1766-95規範設計自製滅菌試樣,進行大氣電漿滅菌測試,作為滅菌確效之依據。比較改變間隔、空氣流量、滅菌時間長短、空氣濕度、氣體種類及氣體組成之影響。結果顯示,針對間隔2、3、5㎜測試,滅菌效果在3㎜具有較佳滅菌效果;氣流流量介於0~24 L/min間,滅菌效果隨施加氣流而上升,唯其後隨流量增加對滅菌則無顯著增進;滅菌時間5~30分鐘,結果顯示滅菌比例隨時間拉長而上升;改變空氣濕度,由0%~80%,結果顯示在5~10%俱有最佳滅菌效果;改變氣體種類,引入純氬氣、氦氣、氮氣,發現幾無滅菌效果。然而,在氬氣和氮氣分別混合0%~20%之氧氣,結果發現滅菌比例隨濃度提高而上升,顯示氧氣之游離電漿俱有相當之滅菌效果。以自製樣品測試滅菌確效,滅菌效果隨著與電極之相關位置不同而有差異,此外,滅菌之半對數殘存曲線呈現線性遞減而無顯著轉折之趨勢,顯示滅菌過程中,並無階段性主導滅菌機制轉變之現象。
Sterilization treatment is an essential procedure for the manufacturing of various in-vivo/ex-vivo biomedical devices. The demands for new sterilization techniques, which are low cost, non-toxic, fast, efficient, and with no damage to material, are increasing. Sterilizing methods suitable for various materials are different due to their individual characteristics. In particular, traditional high-temperature sterilization would not be appropriate for the processing of a thermo-sensitive material. The goal of this research is to study the effects of sterilization on biomedical devices by non-thermal atmospheric plasma treatment and to evaluate the effects of various operating parameters of plasma treatment on the efficiencies of plasma generation and sterilization. Effects of operating parameters on the efficiencies of plasma generation were evaluated through analyzing the discharge power and the I/O ratio of power for the non-thermal atmospheric plasma system.
The gas plasma system used here in is type of dielectric barrier discharge (DBD) combined with high voltage corona discharge. The present study indicates that there are important and sensitive parameters affecting the features of plasma discharge, including the type of electrode, operating voltage, frequency and composition of gas…etc. Meanwhile, the plasma discharge of the system is not sensitive to the height of the gap, flow rate, humidity of air…etc. By taking into account the factors of power ,discharge efficiency , homogeneity ,and available space for operation, the present study confirmed an appropriate operating condition for the system with gap height of 5mm, frequency of 300Hz, and voltage of 90V(15KV/220V).
By setting the operating parameters to the condition chosen for ensuring an optimum discharging performance, commercially available bio-indicator of Bacillus pumilus ATCC 27142 with CFU of 106 was applied for the efficacy assessment of a sterilization process by referring to the time required for the observation of its turbidity change after incubation. Also, specimens loaded with spores based on the guidance of ASTM E1766-95 were prepared for sterilization tests performed to study the effects of the gap height between electrode and dielectric plate, flow rate, sterilization time, humidity of air, the type of gas, and the composition of gas on the performance of the present non-thermo atmospheric plasma sterilization system. Result indicates that the system has the best performance while the gap height is 3mm compared to system with gap height of 2mm and 5mm. For gas flow rate ranging from 0 to 24 L/min, results indicate that the effectiveness of sterilization increases by increasing a gas flow. However, the sterilization efficiency does not increase by further increasing the gas flow rate. By increasing sterilization time from 5 to 30min., the sterility level increases accordingly. For the humidity of air ranging from 0 to 80 %, results indicate that the best efficiency of sterilization is for the air with humidity of 5-10%. The plasmas of pure gases of Ar, He, and N2 are almost ineffective for sterilization. By adding 0 to 20% of N2, results indicate that the best efficacies of sterilization of Ar and N2 plasmas are increased with the increase of oxygen ratio, which suggests oxygen plasma is effective for sterilization. The results obtained from tests for self-loaded samples indicate that the efficacy of sterilization depends on the position of the specimen placed. The sterilization mechanism revealed by the survivor curves obtained from the self-loaded samples shows a nice linear relationship. There is no slope changes observed in the survivor curve suggesting that the dominating mechanism for sterilization does not change during the process.
中文摘要 I
ABSTRACT III
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1研究背景 1
1.2主要現行滅菌方法及高分子醫療器材之滅菌需求 1
1.3 非熱氣體電漿滅菌效應之文獻回顧 2
1.3.1 氣體電漿原理、種類、應用 3
1.3.2 典型電漿設備組成 4
1.3.3 商業化電漿滅菌系統 5
1.3.4 殘存曲線與D-value(Decimal value) 5
1.3.5 低壓氣體電漿滅菌機制 6
1.3.6電漿設備可調控參數 7
1.3.6.1電漿源系統 7
1.3.6.2進氣種類和組成 8
1.3.6.3電漿材料之間交互作用 10
1.4.6.4樣品本身特性 11
1.6 研究目的與動機 13
第二章 實驗方法 14
2.1非熱大氣電漿研究材料與設備 14
2.2.1非熱大氣電漿裝置與元件 14
2.2.2非熱大氣電漿裝置工作之機構 14
2.2.3滅菌確效實驗器材與材料 15
2.2.4滅菌確效實驗材料製備 16
2.2滅菌成效測試方法 17
2.2.1菌種選擇 17
2.2.2生物指示劑滅菌效能檢測 18
2.2.2.1生物指示劑簡介與操作方法 18
2.2.2.2生物指示劑濁度之理論推導 18
2.2.2.3 菌種生長曲線測定 19
2.2.3 自製樣品滅菌確效測試方法 20
2.2.4 電子顯微鏡之孢子觀察 20
2.2.5 超音波之孢子回收測試 21
第三章 結果與討論 22
3.1非熱大氣電漿裝置放電特性測試 22
3.1.1 變壓器種類效應 22
3.1.2 電極構形效應 23
3.1.3 電極與介電質間距效應 24
3.1.4 電壓效應 24
3.1.5 頻率效應 24
3.1.6 氣流量效應 25
3.1.7 線路隔離效應 25
3.1.8 加裝壓克力外罩效應 26
3.1.9 空氣溼度效應 26
3.1.10 氣體種類效應 26
3.2放電均勻度之影像觀察 28
3.2.1電極與介電質之間距效應 28
3.2.2氣流量效應 28
3.2.3電極構形效應 28
3.3滅菌確效測試 29
3.3.1生物指示劑滅菌成效 29
3.3.1.1 tyvek包裝效應 29
3.3.1.2電極與介電質之間距效應 30
3.3.1.3氣流量效應 30
3.3.1.4滅菌時間效應 31
3.3.1.5空氣溼度效應 32
3.3.1.6氣體種類效應 33
3.3.1.7氣體組成效應 33
3.3.2自製滅菌樣品測試 34
3.3.2.1 孢子分散情形觀察 35
3.3.2.2 滅菌均勻度 35
3.3.2.3 滅菌之殘存曲線 36
第四章 結論 38
第五章 參考文獻 40
Akitsu T, Ohkawa H, Tsuji M, Kimura H, Kogoma M, “Plasma sterilization using glow discharge at atmospheric pressure.” Surface & Coatings Technology 2005; 193: 29– 34
ASTM E1766-95, “Standard Test Method for Determination of Effectiveness of Sterilization Processes for Reusable Medical Devices.” 2007.
ASTM F-2097, “Standard guide for design and evaluation of primary packaging for medical products.” 2001.
Boucher RMG, “State of the art in gas plasma sterilization.” Medical Device and Diagnostic Industry, 1985; 7: 51-56.
Chau TT, Kao KC, Blank G, Madrid F, “Microwave plasma for low-temperature dry sterilization” Biometerial, 1996; 17(13):1273-1277
Choudhury M, Hutchings IM, “The effects of irradiation and ageing on the abrasive wear resistance of ultra high molecular weight polyethylene.” Wear, 1997; 203: 335-340.
Gwoen B, Kim DB, Moon SY, Choe W, “Escherichia coli deactivation study controlling the atmospheric pressure plasma. ” Current Applied Physics ,2009; 9: 625–628
Edidin AA, Jewett CW, Kalinowski A, Kwarteng K, Kurtz SM, “Degradation of mechanical behaviour in UHMWPE after natural and accelerated aging.” Biomaterials, 2000; 21: 1451-1460.
Hury S, Vidal DR, Desor F, Pelletier J, Lagarde T, “A parametric study of the destruction efficiency of Bacillus spores in low pressure oxygen-based plasmas.” Letters in Applied Microbiology, 1998; 26(6): 417-421.
Kelly-Wintenberg K, Montie TC, Brickman C, Roth JR, Carr AK, Sorge K, Wadsworth LC, and Tsai PPY, “Room temperature sterilization of surfaces and fabrics with a One Atmosphere Uniform Glow Discharge Plasma.” Journal of Industrial Microbiology & Biotechnology , 1998; 20: 69–74
Krebs MC, Becasse P, Verjat D, Darbord JC, “Gas–plasma sterilization: relative efficacy of the hydrogen peroxide phase compared with that of the plasma phase.” International Journal of Pharmaceutics, 1998; 160(1): 75-81.
Laroussi M, “Nonthermal decontamination of biological media by atmospheric-pressure plasma : Review ,analysis ,and prospects.” IEEE Transactions on Plasma Science, 2002; 30(4): 1409-1415
Lee K, Paek KH , Ju WT, Lee Y, “Sterilization of bacteria, yeast, and bacterial endospores by atmosphere-pressure cold plasma using helium and oxygen.” The Journal of Microbiology, 2006;44(3): 269-275
Lerouge S, Wertheimer MR, Marchand R, Tabrizian M, Yahia LH, “Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization.” Journal of Biomedical Materials Research, 2000; 51(1): 128-135.
Liu H, Chen J, Yang L, Zhou Y “Long-distance oxygen plasma sterilization: effects and mechanisms.” Applied Surface Science, 2008; 254: 1815–1821
Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH, “Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms.” International Journal of Pharmaceutics, 2001; 226(1-2): 1-21.
Moisan M, Barbeau J, Crevier MC, Pelletier J, Philip N, and Saoudi B, “Plasma sterilization. methods and mechanisms.” Pure and Applied Chemistry , 2002;74: 349–358
Montie TC, Kelly-Wintenberg K, Reece Roth J, “An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials.” IEEE Trans. Plasma Sci, 2000;28(1): 41-50
Moreau S, Moisan M, Tabrizian M, Barbeau J, Pelletier J, Ricard A, Yahia L’H, “Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores: Influence of the operating conditions.” Journal of Applied Physics, 2000; 88(2): 1166-1174.
Muranyi P, Wunderlich J, and Heise M, “Influence of relative gas humidity on the inactivation efficiency of a low temperature gas plasma.” Journal of Applied Microbiology, 2008;104:1659-1666
Nagatsu M, Terashita F, Nonaka H, Xu L, Nagata T and Yukio Koide, “Effects of oxygen radicals in low-pressure surface-wave plasma on sterilization.” Applied Physics Letters , 2005;86(211502):1-3
Ohnishi S, Sugimoto S, Nitta I, “Electron spine resonance study of radiation oxidation of polymers. IIIA. Results for polyethylene some general remarks.” Journal of Polymer Science: Part A, 1963; 1: 605-623.
Philip N, Saoudi B, Crevier MC, Moisan M, Barbeau J, Pelletier J, “The respective roles of UV photon and oxygen atoms in plasma sterilization at reduced gas pressure : The Case of N2- O2 mixtures. ” IEEE Transactions on Plasma Science, 2002; 30(4): 1429-1436
Premnath V, Harris WH, Jasty M, Merrill EW, “Gamma sterilization of UHMWPE articular implants: an analysis of the oxidation problem. ultra high molecular weight poly ethylene.” Biomaterials, 1996; 17(18): 1741-53
Trompeter FJ, Neff WJ, Franken O, Heise M, Neiger M, Liu S, Pietsch GJ, Saveljew AB, “Reduction of bacillus Subtilis and Aspergillus Niger spores using nonthermal atmospheric gas discharges” IEEE Transactions on Plasma Science, 2002; 30(4): 1416-1423
Uhm HS, Lim JP , and Li SZ, “Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet, Applied Physics Letter,2007; 90(261501): 1-3
Vicoveanu D, Popescu S, Ohtsu Y, Fujita H, “Competing inactivation agent for bacterial Spores in radio-frequency oxygen plasmas” Plasma Processes and polymers, 2008;5: 350-358
Yu QS, Huang C, Hsieh FH, Huff H, Duan Y, “Bacteria inactivation using a low-temperature atmospheric plasma brush sustained with argon gas.” Journal of biomedical Materials Research Part B: Applied Biometerials, 2006; 80: 211-219
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top