跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖志偉
研究生(外文):Chih-Wei Liao
論文名稱:對稱與非對稱性全人工膝關節元件之運動學分析
論文名稱(外文):Kinematic Analysis of Symmetric and Asymmetric Designs of Total Knee Prosthesis
指導教授:鄭誠功鄭誠功引用關係
指導教授(外文):Cheng-Kung Cheng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:53
中文關鍵詞:全人工膝關節運動學非對稱元件
外文關鍵詞:TKAkinematicasymmetric designs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人工膝關節發展至今近半世紀,早期發展目的為治療關節疾病減緩疼痛,但無法滿足膝關節活動機轉,患者置換後常因膝關節活動度受限,造成膝關節元件受力不當產生鬆脫或斷裂,成功率不高。隨醫療技術進步與對膝關節的活動逐漸了解,目前人工膝關節十年存活率皆可達90%以上。
  但過去研究指出置換人工膝關節後膝關節運動學與正常膝關節不同,此差異是造成膝關節無法回復正常彎曲活動度的原因之一,進而造成患者日常生活活動受限。有學者提出透過非對稱膝關節元件設計,有助於改善患者術後的運動學表現。而針對非對稱型膝關節元件是否能改善運動學表現之研究仍較少。因此本研究希望透過三維膝關節動態模型,將股骨元件之非對稱特徵分成兩個參數討論,一為改變內側股骨髁曲率半徑,一為改變內側股骨髁曲率中心高度,重建兩組非對稱股骨元件,於膝關節模型模擬置換不同元件,觀察不同參數對於膝關節彎曲活動運動學影響,並比較不同膝關節元件外形對於附近韌帶伸縮量差異與量測最大彎曲角度。
  模擬結果顯示於膝關節彎曲時,股骨元件內側曲率半徑加大與股骨內側曲率中心往股骨近端移動之人工膝關節,相較於傳統設計可增加脛骨內轉與增加股骨外側髁後移量。比較結果發現,改變元件幾何外形後,膝關節於不同彎曲角度下之韌帶長度變化量與傳統設計有所差異,進而影響膝關節運動學與術後彎曲最大活動度表現。未來可以利用此研究建立之模擬方式,探討不同全人工膝關節元件參數設計,對術後膝關節運動學的影響。
The knee arthroplasty has been developed for nearly half a century. The primary goal for knee arthroplasty was to relieve pain without fully considering about the mechanism of knee joint movement. The survival rate was limited due to the decreased range of motion and the loosening or rupture of knee joint prosthesis. Following the improvement of medical techniques, the survival rate of the knee arthroplasty has increased up to 90% nowadays.
Previous studies indicated that there are the differences of knee joint kinematics between artificial and normal knee joint. These differences might be one of the reasons for the range of motion limitation after arthroplasty and contributed to further disability in daily activities. Few researches focused on how the asymmetric component of knee arthroplasty improves the kinematic performance. We changed the diameters and the heights of the curvature center at medial condyle to construct two sets of asymmetric femoral component. The purpose of this study is then (1) to investigate the effect of different parameters of asymmetric femoral component on knee flexion kinematics; (2) to compare the maximal flexion angle among different contour designs of knee arthroplasty components.
The results revealed that the design of increased the curvature diameter and the height of center can increase the tibal internal rotation and the amount of posterior movement of lateral condyle. Comparing with traditional designs, the changed contour design of component influences the length of ligaments during knee flexion. The ligament length may affect the knee joint kinematics and the maximal flexion angle after surgery. Dynamic simulation method was successfully applied to explore the effect on the knee kinematics in different designs of knee prothesis.
目錄
中文摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 前言 1
1-1 研究背景 1
1-2 膝關節解剖與運動學 2
1-3 全人工膝關節簡介 5
1-4 文獻回顧 9
1-5 研究目的 14
第二章 研究方法 15
2-1 骨骼模型建立 17
2-2 正常膝關節模型 19
2-2-1 膝關節彎曲軸向 19
2-2-2 膝關節模型座標設定 19
2-2-3 設置半月板 20
2-2-4 自由度限制及接觸設定 21
2-2-5 韌帶組織建立 22
2-2-6 肌肉力量設置及脛股骨關節限制力 25
2-2-7 彎曲活動 26
2-2-8 正常膝關節模型之驗證 26
2-3 全人工膝關節元件建立 27
2-4 建立全人工膝關節置換後模型 30
2-5 量測運動學資訊 31
第三章 結果 32
3-1 正常膝關節運動學 32
3-2 全人工膝關節置換後運動學 34
3-2-1 置換傳統設計元件 34
3-2-2 置換變更曲率半徑之元件 36
3-2-3 置換變更內外髁高低之元件 38
3-3 韌帶長度變化量測 40
3-4 最大彎曲角度 44
第四章 討論 45
4-1 正常膝關節運動學比較 45
4-2 原始設計之人工膝關節置換後運動學比較 47
4-3 參數變更之人工膝關節置換後運動學比較 48
4-4 最大彎曲角度比較 50
4-5 研究限制 51
第五章 結論 52
參考文獻 53
參考文獻
[1] Lai YS, Chang TK, Wei HW, Cheng CK, An analysis of knee replacements data of Taiwan. European Orthopedic Research Society, 2005
[2] Stiehl JB, Hamelynck KJ, Voorhorst PE, International multi-centre survivorship analysis of mobile bearing total knee arthroplasty. International orthopaedics, pp.190-199, 2006
[3] Dennis DA, Komistek RD, Mahfouz MR. In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clinical Orthopaedics and Related Research, Vol.410, pp.114-130, 2003
[4] Victor J, Bellemans J. Physiologic Kinematics as a Concept for Better Flexion in TKA. Clinical Orthopedics and Related Research, Vol.452, pp.53-58, 2006
[5] Kim YH, Sohn KS, Kim JS. Range of motion of standard and high-flexion posterior stabilized total knee prostheses. The Journal of Bone and Joint Surgery, Vol.87, pp.1470-1475, 2005
[6] The Athletic Advisor. http://www.athleticadvisor.com/
[7] Nordin M, Frankel VH, Basic biomechanics of the musculoskeletal system: Philadelphia: Lea and Febiger, pp.275-304, 1989.
[8] Williams A, Logan M, Understanding tibio-femoral motion. The Knee, Vol.11, pp.81-88, 2004
[9] Grelsamer RP, Weinstein CH, Applied Biomechanics of the Patella. Clinical Orthopaedics and Related Research, Vol.389, pp.9-14, 2001
[10] Hungerford DS, Barry M, Biomechanics of the Patellofemoral Joint. Clinical Orthopaedics and Related Research, Vol.144, pp.9-15, 1979
[11] Katchburian MV, Bull AM, Shih YF, Heatley FW, Amis AA. Measurement of patellar tracking: assessment and analysis of the literature, Clinical Ortho- paedics and Related Research, Vol.412, pp.241-259, 2003
[12] Patel VV, Hall K, Ries M, Lindsey C, Ozhinsky E, Lu Y, Majumdar S, Magnetic Resonance Imaging of Patellofemoral Kinematics with Weight- Bearing. The Journal of Bone and Joint Surgery, Vol.85, pp.2419-2424, 2003
[13] Nakagawa S, Kadoya Y, Kobayashi A, Tatsumi I, Nishida N, Yamano Y. Kinematics of the Patella in Deep Flexion: Analysis with Magnetic Resonance Imaging. The Journal of Bone and Joint Surgery, Vol.85, pp.1238-1242, 2003
[14] Chiu YS, Chen WM, Huang CK, Chiang CC, Chen TH, Fracture of the polyethylene tibial post in a NexGen posterior-stabilized knee prosthesis. The Journal of Arthroplasty, Vol.19, pp.1045-1049, 2004
[15] Nozaki H, Banks SA, Suguro T, Hodge WA, Observations of femoral rollback in cruciate-retaining knee arthroplasty. Clinical Orthopaedics and Related Research, Vol.404, pp.308-314, 2002
[16] Bertin KC, Komistek RD, Dennis DA, Hoff WA, Anderson DT, Todd Langer, In vivo determination of posterior femoral rollback for subjects having a NexGen posterior cruciate-retaining total knee arthroplasty. Journal of Arthroplasty, Vol.17, pp.1040-1048, 2002
[17] Dennis DA, Komistek RD, Stiehl JB, Walker SA, Dennis KN, Range of motion after total knee arthroplasty. Journal of Arthroplasty, Vol.13, pp.748-752, 1998
[18] Malkani AL, Rand JA, Bryan RS, Wallrichs SL, Total knee arthroplasty with the kinematic condylar prosthesis. A ten-year follow-up study. Journal of Bone and Joint surgery, Vol.77, pp.423-431, 1995
[19] Cates HE, Komistek RD, Mahfouz MR, Schmidt MA, Anderle M, In vivo comparison of knee kinematics for subjects having either a posterior stabilized or cruciate retaining high-flexion total knee arthroplasty. Journal of Arthroplasty, Vol,7. pp.1057-1067, 2008
[20] Walker PS, Kurosawa H, Abe S, Garg A, Hunter T. Geometry and motion of the knee for implant and orthotic design. Journal of Biomechanics, Vol.18, pp.487-99, 1985
[21] Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. Journal of Bone & Joint Surgery, British,Vol.82, pp.1189-1195, 2000
[22] Catani F, Belvedere C, Ensini A, Leardini A, Benedetti MG, Feliciangeli A, Giannini S. In vivo kinematics of guided motion total knee arthroplasty. Orthopaedic Research Society, 2008
[23] Moonot P, Mu S, Railton GT, Field RE, Banks SA. Tibiofemoral kinematic analysis of knee flexion for a medial pivot knee. Knee Surgery, Sports Traumatology, Arthroscopy, 2009
[24] Yu CH, Walker PS, Dewar ME. The effect of design variables of condylar total knees on the joint forces in step climbing based on a computer model. Journal of Biomechanics, Vol.31, pp1011-1021, 2001
[25] Matsuda M, Iwatsubo T, Kawamura S, Muratsu H, Yoshiya S, Kurosaka M. Design of the femoral condylar geometry of the artificial knee joint. Bioengineering Conference, 2003
[26] Lee KJ. Three-dimensional dynamic model construction for predicting knee kinematics-comparison of native knee and knee arthroplasty. Master thesis of Institute of Biomedical Engineering NYMU, 2007
[27] Brindle T, Nyland J, Johnson DL. The meniscus: Review of basic principles with application to surgery and rehabilitation. Journal of Athletic Training Vol.36, pp.160-169, 2001
[28] Abdel-Rahman EM, Hefzy MS. Three-dimensional dynamic behavior of the human k ee joint under impact loading. Medical Engineering and Physics, Vol. 20, pp.276-290, 1998
[29] Mesfar W, Shirazi-Adl A. Knee joint mechanics under quadriceps-hamstrings muscle forces are influenced by tibial restraint. Clinical Biomechanics, Vol. 21, pp.841-848, 2006
[30] Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using interventional MRI. Journal of Biomechanics, Vol.38, pp.269-276, 2005
[31] Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ. Simulation of a knee joint replacemet during a gait cycle using explicit finite element analysis. Journal of Biomechanics, Vol. 25, pp.267-273, 2002
[32] Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movent 2: the loaded and unloaded living knee studied by MRI. Journal of Bone & Joint Surgery, British, Vol.82, pp.1196-1198, 2000
[33] Akalan NE, Ozkan M, Temelli Y. Three-dimensional knee model: Constrained by isometric ligament bundles and experimentally obtained tibio-femoral contacts. Journal of Biomechanics, Vol.41, pp.890-896, 2008
[34] Most E, Zayontz S, Li G, Otterberg E, Sabbag K, Rubash HE. Femoral rollback after cruciate-retaining and stabilizing total knee arthroplasty. Clinical Orthopaedics and Related Research, Vol.410, pp.101-113, 2003
[35] Hamai S, Miura H, Higaki H, Matsuda S, Shimoto T, Sasaki K, Yoshizumi M, Okazaki K, Tsukamot N, Iwamoto Y. Kinematic analysis of kneeling in cruciate-retaining and posterior-stabilized total knee arthroplasties. Journal of Orthopaedic Research, Vol.10, pp.435-442, 2008
[36] Banks SA, Markovich GD, Hodge WA. In vivo kinematics of crusiate-retaining and-substituting knee arthroplasties. The Journal of Arthroplasty, Vol.12, pp.297-304, 1997
[37] Wilson DR, Feikes J, O’Connor JJ. Ligaments and articular surfaces guide passive knee flexion. Journal of Biomechanics, Vol.31, pp.1127-1136, 1998
[38] Li G, Zayontz S, Most E, Otterberg E, Sabbag K, Rubash HE. Cruciate-retaining and cruciate-substituting total knee arthroplasty-an in vitro comparison of the kinematics under under muscle loads. The Journal of Arthroplasty, Vol.16, pp.150-156, 2001
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top