跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/27 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊展宗
研究生(外文):Chan-Tsung Yang
論文名稱:髓腔血管再生型股骨柄的結構設計與測試
論文名稱(外文):Mechanical Design and Test of Hip Stem for Medullary Revascularization
指導教授:鄭誠功鄭誠功引用關係
指導教授(外文):Cheng-Kung Cheng
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:80
中文關鍵詞:髓腔血管再生中空骨柄
外文關鍵詞:Medullary Revascularizationhollow stem
相關次數:
  • 被引用被引用:1
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的為研發一種能兼顧適當力學強度以及足夠髓腔空間供血管再生的股骨柄。本研究分為兩部分,第一部份為骨柄的基本構型設計與測試。採用中空且具有孔洞的概念以得到足夠的髓腔空間。為研究不同中空參數對於骨柄應力的影響,本研究利用三維有限元素模型來分析不同設計參數之中空骨柄在ISO7206-4負載條件下的應力分佈。中空參數包括三種厚度、九種深度以及兩種孔洞型態,這些參數互相搭配並觀察應力變化的趨勢。最後根據有限元素分析的結果選定適當的參數,最終的中空骨柄為近端薄遠端厚,搭配經過仔細評估過的孔洞型態,成功地將中空骨柄在疲勞分析的安全因子控制在2以上。接著本研究製作出中空骨柄的原型,並應用於疲勞測試實驗,共有三支中空骨柄原型通過疲勞測試,證明有限元素模型以及設計流程可以符合原本目的。
第二部分為結構上之補強以滿足臨床使用的需求,為了研究第一部份所設計出的中空骨柄是否保有適當之強度與初期穩定度,以符合臨床上多變的負載狀況,建立三維有限元素模型以模擬骨柄植入股骨後的生理負載條件。同時為了加大中空骨柄的勁度以解決潛在性問題-即因勁度降低而造成微動量過大,本研究嘗試在中空骨柄的內部增加網狀結構,並在簡化的有限元素模型之中將這網狀結構的楊氏模數設為鈦合金的50%、37.5%、25%以及10%以分析不同孔隙比的網狀結構對於穩定度的影響。結果顯示實心骨柄與中空骨柄的最大微動量分別為130.53 �慆、164.13 �慆。各種勁度的中空骨柄都能保有接觸面積56%以上的骨生長能力,在評估強度與穩定度的需求之後,建議中空骨柄的內部網狀補強結構其楊氏模數應在鈦合金的25%以上。
This study aims to develop a femoral stem which maintains appropriate mechanical properties for clinical use and provides enough medullary space for revascularization. There were two parts in this study. In first part the basic structure of the stem was designed and tested. Hollow and drilled stem concept was conducted in this study to get sufficient medullary space. To investigate the effects of different hollow parameters on the stress of the stem, the stress distributions of stems with various hollow parameters under ISO7206-4 loading were examined by 3D finite element analysis. Hollow parameters included three thicknesses, nine bore depths and two hole patterns. The stress distribution trend was observed to see how these hollow parameters combine affect the strength of the hollow stem. Finally the appropriate parameters were determined. The final hollow stem design for medullary revascularization was determined as an dual-thickness hollow structure with a special hole pattern on it. Then, fatigue tests were conducted on three prototype stems. All three prototypes passed the fatigue test. Therefore the finite element models and design processes were proved to be useful for the hollow stem design.
The second part of this study was to modify the hollow stem to fulfill the clinical requirement. The 3D finite element models were built to simulate the physical load of the hollow stem that developed from the part one. The initial stability of the hollow stem during physical load was investigated. The mesh structure was added to the inside space of the hollow stem in order to increase the stiffness of the stem and solve the potential problem, namely the excessive micromotion due to low stiffness of the hollow stem. To simplify the finite element models the Young’s modulus of the inside mesh structure was set as 50%, 37.5%, 25% and 10% of titanium alloy to investigate the effect of different porosities on stability. The results showed the maximum micromotion of the solid and hollow stem was 130.53 and 164.13 �慆 respectively. The stem of every stiffness can make bone ingrowth (micromotion < 40 �慆) at least 56% of the contact area. Furthermore, the stability of the hollow stem was close to the solid stem when the Young’s modulus of the inside mesh structure was higher than 25% of titanium alloy.
目錄
中文摘要…………………………………………………………………I
Abstract…………………………………………………………………III
目錄…………………………………………………………………….IV
圖目錄…………………………………………………………………VII
表目錄…………………………………………………………………..X

第一部份 基本構型之設計與測試
-體外測試模式之研究
第一章 前言…………………………………………………………….2
1-1 人工髖關節簡介.........................................................................2
1-2 人工髖關節股骨柄的臨床問題……………………………….6
1-3 文獻回顧……………………………………………………….9
1-4 研究動機………………………………………………………12
1-5 研究目的………………………………………………………13
第二章 材料與方法……………………………………………………14
2-1 中空參數………………………………………………………..14
2-2 有限元素模型的建立…………………………………….……16
2-3 中空參數的確定……………………………………………….20
2-4 驗證與測試…………………………………………………….21
第三章 結果……………………………………………………………23
3-1 實心骨柄的應力………………………………………………..23
3-2 骨柄中段區的應力……………………………………………..25
3-3 骨柄近端區的應力……………………………………………..26
3-4 最終設計中空骨柄......................................................................27
3-5 驗證與疲勞測試………………………………………………..29
第四章 討論……………………………………………………………31
4-1 ISO7206-4規範的採用…………………………………………32
4-2 有限元素模型的驗證………………………………………….35
4-3 骨柄中段區的結果討論……………………………………….36
4-4 骨柄近端區的結果討論…………………………………...…..37
4-5 最終設計中空骨柄的參數取決……………………………….38
4-6低勁度股骨柄的疑慮.………………………………………….39
4-7 研究限制……………………………………………………….40

第二部份 結構之補強
-體內生理負載模式之研究
第一章 前言……………………………………………………………43
1-1 股骨柄的初期穩定度…………………………………………..43
1-2 文獻回顧……………………………………………………….44
1-2-1 植入物穩定度之相關文獻……………………………….44
1-2-2 有限元素法研究穩定度之相關文獻…………………….45
1-3 研究動機.....................................................................................46
1-4 研究目的……………………………………………………….46
第二章 材料與方法…………………………………………………....48
2-1 股骨柄種類…………………………………………………….48
2-2 有限元素模型之建立………………………………………….50
2-3 股骨柄穩定度評估…………………………………………….53
第三章 結果............................................................................................54
3-1 股骨柄的應力………………………………………………….54
3-2 股骨柄的穩定度……………………………………………….56
第四章 討論……………………………………………………………61
4-1 有限元素模型的限制…………………….…………………….61
4-2 股骨柄的應力分佈……………………………….…………….63
4-3 股骨柄的穩定度………………………………………………..64
4-4 應力遮蔽效應…………………………………………………..68
4-5中空骨柄的特性………………………………………………...68
4-6內部網狀結構的採用…………………………………………...70
4-7 未來研究方向…………………………………………….…….71
第五章 結論……………………………………………………….…...72
參考文獻………………………………………………………….…….73
附錄1…………………………………………………………………...80
1. Crenshaw A.H., Campbell’s Operative Orthopaedics, Mosby Year Book, 1992.
2. American Association of Orthopaedic Surgeons, Statistics: Patient Demographics. http://www.aaos.org/Research/stats/patientstats.asp, 2008.
3. The Norwegian Arthroplasty Register, Annual Reort, 2008.
4. Lai Y.S., Wei H.W., Cheng C.K., Incidence of hip replacement among National Health Insurance enrollees in Taiwan. Journal of Orthopaedic Surgery and Research 2008;3:42.
5. Gert, D.K., Nikolaus, J.W., Tanja, Z., Gebhard, S., Alexander, B., Lothar, K., Lutz, E., Claes, P.A.. Influence of preoperative mechanical bone quality and bone mineral density on aseptic loosening of total hip arthroplasty after seven years. Clinical Biomechanics 2003;18:916–23.
6. Marshall, D.A., Mokris, G.J., Reitman, D.R., Dandar, A., Mauerhan, D.R.. Cementless titanium tapered-wedge femoral stem: 10 to 15-year follow-up. The Journal of Arthroplasty 2004;19:546–52.
7. Phillips, T.W., Nguyen, L.T., Munro, S.D.. Loosening of cementless femoral stems: a biomechanical analysis of immediate fixation with loading vertical, femur horizontal. Journal of Biomechanics 1991;24:37–9.
8. Malchau H., Herberts P., Eisler T., Garellick G., Soderman P., The Swedish Total Hip Replacement Register. Journal of Bone and Joint Surgery 2002;84A:2-20.
9. Lombardi A.V., Mallory T.H., Vaughn B.K., Drouillard P., Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. Journal of Bone and Joint Surgery 1989;71A:1337-42.
10. Schmalzried T.P., Jasty M., Harris W.H., Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. Journal of Bone and Joint Surgery 1992; 74A:849-63.
11. Szmukler-Moncler S., Salama H., Reingewirtz Y., Dubrille J.H.. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. Journal of Biomedical Materials Research 1998;43:192-203.
12. Ramamurti B.S., Orr T.E., Bragdon C.R., Lowenstein J.D., Jasty M., Harris W.H.. Factors influencing stability at the interface between a porous surface and cancellous bone: a finite element analysis of a canine in vivo micromotion experiment. Journal of Biomedical Materials Research 1997;36:274-80.
13. Arlot M.E., Bonjean M., Chavassieux P.M., Meunier P.J.. Bone histology in adults with aseptic necrosis. Histomorphometric evaluation of iliac biopsies in seventy-seven patients. Journal of Bone and Joint Surgery 1983;65A:1319-27.
14. Radl R., Egner S., Hungerford M., Rehak P., Windhager R.. Survival of cementless femoral components after osteonecrosis of the femoral head with different etiologies. Journal of Arthroplasty 2005;20:509-515.
15. Engh, C.A., Mcauley, J.P., Sychterz, C.J., Sacco, M.E., Engh, C.A.. The accuracy and reproducibility of radiographic assessment of stress-shielding. Journal of Bone and Joint Surgery 2000;82A: 1414-20.
16. Engh, C.A., Young, A.M., Engh, C.A., Hopper, R.H.. Clinical Consequences of Stress Shielding After Porous-Coated Total Hip Arthroplasty. Clinical Orthopaedics and Related Research 2003;417: 157-63.
17. Joshi, M.G., Advani, S.G., Miller, F., Santare, M.H.. Analysis of a femoral hip prosthesis designed to reduce stress shielding. Journal of Biomechanics 2000;33:1655-62.
18. Huiskes, R.. The various stress patterns of press-fit, ingrown and cemented femoral stems. Clinical Orthopedics 1990;261:27-38.
19. Huiskes, R.. Bone remodeling around implants can be explained as an effect of mechanical adaptation. In: Galante, J.O., Rosenberg, A.G., Gallaghan, J.J. (Eds.), Total Hip Revision Surgery. Raven Press, New York, 1995:159-71.
20. Huiskes, R., Weinans, H., Van Rietbergen, B.. The relationship between stress shielding and bone besorption around total hip stems and the effects of flexible materials. Clinical Orthopedics 1992;274: 124-34.
21. Pazzaglia UE, Zatti G, Cattaneo S, Cherubino P. Evaluation of hollow and full stems implanted in the rabbit tibia: preliminary results. Biomaterials 1993;14(12):883-86.
22. Harms J, van de Berg PA, Mertz C. Knochenre-vascularization nach Refobacin-Palacos-Fullung. Eine experimentelle Untersuchung an der Hundetibia. Arch. Orthop. Unfgall-Chir 1974; 71-78.
23. Rhinelander FW, Nelson CL, Stewart RD, Stewart CL. Experimental reaming of the proximal femur and acrylic cement implantation. Vascular and histologic effects. Clinical Orthopaedics 1979;141:74-89.
24. Pazzaglia UE. Periosteal and endosteal reaction to reaming and nailing: the possible role of revascularization on the endosteal anchorage of cementless stems. Biomaterials 1996;17(10):1009-14.
25. Bobyn, J.D., Glassman, A.H., Goto, H., Krygier, J.J., Miller, J.E., Brooks, C.E.. The effect of stem stiffness on femoral bone resorbtion after canine porous coated total hip replacement. Clinical Orthopaedics and Related Research 1990; 261:196–213.
26. Schmidt, J., Hackenbroch, M.H.. The cenos hollow stem total hip arthroplasty: first experiences in a prospective study. Archives of the Orthopaedic Trauma Surgery 1994;113:117–20.
27. Gross, S., Abel, E.w., 2001. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. Journal of Biomechanics 2001;34:995-1003
28. Viceconti M, Toni A, Giunti A. Effects of some technological aspects on the fatigue strength of a cementless hip stem. Journal of Biomedical Materials Reasearch 1995;29(7):875-81.
29. International Organization for Standardization. ISO7206-4. Implants for surgery: partial and total hip joint prostheses. 1989.
30. Raimondi MT, Pietrabissa R. Modelling evaluation of the testing condition influence on the maximum stress induced in a hip prosthesis during ISO 7206 fatigue testing. Medical Engineering & Physics 1999;21(5):353-59.
31. Pancanti A, Bernakiewicz M, Viceconti M. The primary stability of a cementless stem varies between subjects as much as between activities. Journal of Biomechanics 2003;36(6):777-85.
32. Zaki M, Saad F, Al-Ebiary MN. Influence of Charnley hip neck-angle inclination on the stress at stem/cement and bone/cement interfaces. Biomedical Material Engineering 2002;12(4):411-21.
33. Kang YK, Park HC, Youn Y, Lee IK, Ahn MH, Ihn JC. Three dimensional shape reconstruction and finite element analysis of femur before and after the cementless type of total hip replacement. Journal of Biomedical Engineering 1993;15(6):497-504.
34. Mann KA, Bartel DL, Wright TM, Burstein AH. Coulomb frictional interfaces in modeling cemented total hip replacements: a more realistic model. Journal of Biomechanics 1995;28(9):1067-78.
35. Kayabasi O, Erzincanli F. Finite element modeling and analysis of a new cemented hip prosthesis. Advances in Engineering Software 2006;37:477-83.
36. Baleani M, Cristofolini L, Viceconti M. Endurance testing of hip prostheses: a comparison between the load fixed in ISO 7206 standard and the physiological loads. Clinical Biomechanics 1999;14(5): 339-45.
37. Tai CL, Shih CH, Chen WP, Lee SS, Liu YL, Hsieh PH, Chen WJ. Finite element analysis of the cervico-trochanteric stemless femoral prosthesis. Clinical Biomechanics 2003;18(6):S53-58.
38. Sumner DR, Turner TM, Igloria R, Urban RM, Galante JO. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. Journal of Biomechanics 1998;31(10):909-17.
39. Sarmiento A, Gruen TA. Radiographic analysis of low-modulus titanium-alloy femoral total hip component. Journal of Bone And Joint Surgery 1985;67A(1):48-56.
40. Niinimäki T, Puranen J, Jalovaara P. Total hip arthroplasty using isoelastic femoral stems. A seven-to nine-year follow-up in 108 patients. Journal of Bone And Joint Surgery 1994;76B(3):413-18.
41. Glassman AH, Crowninshield RD, Schenck R, Herberts P. A low stiffness composite biologically fixed prosthesis. Clinical Orthopaedics and Related Research 2001;393:128-36.
42. Karrholm J, Anderberg C, Snorrason F, Thanner J, Langeland N, Malchau H, Herberts P. Evaluation of a femoral stem with reduced stiffness. A randomized study with use of radiostereometry and bone densitometry. Journal of Bone and Joint Surgery 2002;84A(9):1651-8.
43. Karrholm J, Snorrason F. Subsidence, tip, and hump micromovements of noncoated ribbed femoral prostheses. Clinical Orthopaedics and Related Research 1993;287:50-60.
44. Sweetnam DI, Lavelle J, Allwood WM, Cohen B. Poor results of the Ribbed Hip System for cementless replacement. Journal of Bone and Joint Surgery 1995;77B(3):366-8.
45. Savilahti S, Myllyneva I, Lindholm TS, Pajamaki KJ, Nevalainen J, Laippala P. Clinical outcome and survival of Link RS total hip prosthesis. Journal of Bone and Joint Surgery 1995;77B(3):369-73.
46. Palm L, Jacobsson SA, Ivarsson I. Hydroxyapatite coating improves 8- to 10-year performance of the link RS cementless femoral stem. Journal of Arthroplasty 2002;17(2):172-5.
47. Fortina M, Carta S, Gambera D, Crainz E, Pichierri P, Ferrata P. Total hip arthroplasty with a ribbed anatomic HA coated stem. Journal of Orthopaedic Traumatology 2006;7:122-25.
48. Kienapfel H, Sprey C, Wilke A, Griss P. Implant fixation by bone ingrowth. The Journal of Arthroplasty 1999;14(3):355-68.
49. Burke DW, Bragdon CR, O'Connor DO. Dynamic measurement of interface mechanics in vivo and the effect of micromotion on bone ingrowth into a porous surface device under controlled loads in vivo. Trans Orthop Res Soc 1991;16:103-111.
50. Burke DW, Bragdon CR, Lowenstein L. Mechanical aspects of the bone porous surface interface under known amounts of implant motion. Trans Orthop Res Soc 1993;18:470-84
51. Jasty M, Krushell R, Zalenski EB. The contribution of the nonporous distal stem to the stability of proximally porous-coated canine femoral components. J Arthroplasty 1993;8:33-45
52. Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop 1986;208:108-21
53. Soballe K, Hansen ES, Rasmussen H. Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J Orthop Res 1992;10:285-311
54. Kuiper JH, Huiskes R. Friction and stem stiffness affect dynamic interface motion in total hip replacement. J Orthop Res 1996;14:36-43.
55. Sakai R, Kanai N, Itoman M, Mabuchi K. Assessment of the fixation stiffness of some femoral stems of different designs. Clinical Biomechanics 2006;21:370-78.
56. Lai YS, Wei HW, Chang TK, Cheng CK. The effects of femoral canal geometries, stem shapes, cement thickness, and stem materials on the choice of femoral implant in cemented total hip replacement. Journal of the Chinese Institute of Engineers 2009;32(3):333-341.
57. Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L. Large-sliding contact elements accurately predict levels of bone–implant micromotion relevant to osseointegration. Journal of Biomechanics 2000;33:1611-18.
58. Mann KA, Bartel DL, Ayers DC. Influence of Stem Geometry on Mechanics of Cemented Femoral Hip Components with a Proximal Bond. Journal of Orthopaedic Research 1997;15:700-06.
59. Stolk J, Verdonschot N, Cristofolini L, Toni A, Huiskes R. Finite element and experimental models of cemented hip joint reconstructions can produce similar bone and cement strains in pre-clinical tests. Journal of Biomechanics 2002;35:499-510.
60. Romero F, Amirouche F, Aram L, Gonzalez MH. Experimental and analytical validation of a modular acetabular prosthesis in total hip arthroplasty. Journal of Orthopaedic Surgery and Research 2007;2:7-21.
61. Lennon AB and Prendergast PJ. Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants. ASME Journal of Biomechanical Engineering 2001;123:623-28
62. Buma P, van Loon PJM, Versleyen H, Weinans H, Slooff TJJH, de Groot K and Huiskes R. Histological and biomechanical analysis of bone and interface reactions around hydroxyapatite-coated intramedullary implants of different stiffness: a pilot study on the goat. Biomaterials 1997;18:1251-60
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top