跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 00:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭筱瑾
研究生(外文):Hsiao-Chin Cheng
論文名稱:植入擴張型椎間融合器之鄰近椎體應力分析
論文名稱(外文):Stress Analysis of Adjacent Vertebral Body after Insertion of Expandable Cage
指導教授:鄭誠功鄭誠功引用關係曾永輝曾永輝引用關係
指導教授(外文):Cheng-Kung ChengYang - Hwei Tsuang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:140
中文關鍵詞:擴張型椎間融合器有限元素法生物力學
外文關鍵詞:expandable cagefinite element methodbiomechanics
相關次數:
  • 被引用被引用:2
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:1
擴張型椎間融合器已廣泛使用於脊椎腫瘤、創傷、退化、畸形矯正等椎體重建手術,而椎間融合器之機構設計、手術置放位置、患者骨質密度等,皆可能影響重建手術結果。由目前臨床上重建手術後,導致鄰近椎體骨折案例可發現融合器與椎體接觸面積過小的植入物設計,也許造成椎體之受力集中而產生破壞。本研究將以有限元素法,分析擴張型椎間融合器植入後鄰近椎體與椎間盤之受力情況,探討擴張型融合器對於脊椎生物力學之影響。模擬不同端板角度組合之擴張型椎間融合器,於彎曲伸展、側彎曲及扭轉的動作時,對所接觸椎體之應力變化及鄰近椎間盤受力的影響,並嘗試尋找較佳之端板角度組合,以降低手術後對於鄰近脊椎椎體與椎間盤的影響,減少鄰近椎體術後發生椎體骨折之可能性。
研究結果顯示,單側下端板為5°之椎間融合器,於動作下表現較其他組佳、應力分佈值亦較低。建議臨床醫師使用擴張型椎間融合器,需視患者脊椎角度不同選擇適合之角度端板元件,以降低接觸椎體之應力變化及鄰近椎間盤受力的影響,減少鄰近椎體於手術後發生椎體骨折之可能性。
本研究亦說明,依據臨床醫學影像量測脊椎角度並分析力學軸向,應選用適合患者脊椎角度之擴張型椎間融合器,建議臨床醫師使用擴張型椎間融合器時,需視患者脊椎角度不同選用適合之端板角度元件,以降低植入物應力,並減少其對於鄰近椎體與椎間盤所造成之生物力學影響。
Indications for performing corpectomy to the spinal column included tumors, trauma, degenerative disease, and deformity. However, many factors will affect the surgical results such as mechanism design of expandable cage, actual placement of cage against the endplate, and bone quality. Post-operative fractures of adjacent vertebral body after surgical reconstruction were observed in clinical cases. One of the reasons may be the decrease of contact area, resulting in higher stress concentration on the endplate. The spinal fusion technique not only provides good stability, but also increases the risk of high stresses on adjacent vertebral body and intervertebral disc.
The purpose of this study was to evaluate the biomechanical performances of the expandable cage and adjacent vertebral body after implantation. Finite element analysis was applied for analyzing stress distributions on adjacent vertebral bodies and adjacent intervertebral disc in simulate flexion, extension, lateral bending, and rotation. The results showed that expandable cage with 5° tilting angle on the bottom had lower stress concentration than the other groups, excepted for relative higher stress on the cage implant and posterior system during lateral bending. As above, the selection of endplate of expandable cage should depend on the angle of spinal structure, would be contributive to the stress of contact area and intervertebral disc in order to decrease the possibility of adjacent vertebral body fracture.
The study also showed that measurements basing on clinical images and the analysis for mechanical axis of spine were necessary before choosing appropriate tilting angle of expandable cages. Clinicians were recommended to choose the expandable cage according to patients’ tilting angles of spinal structure by changing endplate component to reduce stresses on implants and biomechanical effects on adjacent vertebral body and intervertebral discs.
謝 誌 i
摘 要 ii
Abstract iii
目 錄 v
圖 目錄 viii
表 目錄 xiii
第一章 前言 1
1-1 研究背景 1
1-2 脊椎之解剖生理與生物力學特性 3
1-2-1 脊椎骨之構造與生物力學 5
1-2-2 小面關節之構造與生物力學 7
1-2-3 椎間盤之構造與生物力學 8
1-2-4 韌帶之構造與生物力學 11
1-3 椎體疾病與臨床診療 12
1-3-1 胸腰椎創傷分類 12
1-3-2 胸腰椎創傷診斷 14
1-3-3 胸腰椎體疾病之治療 15
1-4 椎體重建與生物力學研究 16
1-4-1 椎體切除術 16
1-4-2 脊椎融合手術 18
1-4-3 脊椎內固定器 19
1-4-4 椎間融合器 21
1-4-5 脊椎生物力學研究 24
1-6 研究動機與目的 31
第二章 研究方法 32
2-1 胸腰椎模型之建立 34
2-2 胸腰椎有限元素模型 38
2-3 胸腰椎模型之收斂測試 40
2-4 胸腰椎模型之驗證 41
2-4-1 胸腰椎體之功能性驗證 41
2-4-2 胸腰椎模型之活動度驗證 42
2-5 擴張型椎間融合器端板角度之選用 45
2-6 擴張型椎間融合器模型建構 46
2-7 模型作用力與邊界條件 49
第三章 結果 51
3-1 上端板為0°及下端板為5°之椎間融合器(S0I5) 51
3-2 上端板為1°及下端板為4°之椎間融合器(S1I4) 59
3-3 上端板為2°及下端板為3°之椎間融合器(S2I3) 67
3-4 上端板為3°及下端板為2°之椎間融合器(S3I2) 75
3-5 上端板為4°及下端板為1°之椎間融合器(S4I1) 83
3-6 上端板為5°及下端板為0°之椎間融合器(S5I0) 91
第四章 討論 99
4-1 實驗數據分析與討論 99
4-1-1 不同動作之脊椎元件應力值比較 99
4-1-2 不同端板角度組合之鄰近椎體應力分析 103
4-1-3 不同端板角度組合之鄰近終板應力分析 105
4-1-4 不同端板角度組合之骨科植入物應力分析 108
4-1-5 脊椎椎間盤之應力變化 111
4-2 胸腰椎生理曲度與端板角度之探討 112
4-3 胸腰椎有限元素模型之假設與限制 114
4-4 未來研究展望 116
第五章 結論 117
參考文獻 118
[1] 李俊仁主編, 實用外科學, 臺北縣中和市:金名圖書, 2005.
[2] Putz R and Pabst R原著, 藍琴臺, 戴安修, 張宏名翻譯, 彩色解剖學圖譜, 合記圖書出版社發行, 1998.
[3] White III A A and Panjabi MM. Clinical Biomechanics of the spine, 1990.
[4] Moore K. Clinically Oriented Anatomy. Third edition. Baltimore: Williams & Wilkins, 1992.
[5] Nordin M and Frankel VH. Basic biomechanics of the musculoskeletal system. Third ed. Philadelphia: Lippincott Williams & Wilkins, 2001.
[6] Herkowitz HN, Garfin SR, Eismont FJ, Bell GR, Balderston RA. Rothman-Simeone The Spine. Fifth ed. Philadelphia: Elsevier, 2006.
[7] Denis F. The three-column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8:817-831, 1983.
[8] Gertzbein SD. Scoliosis Research Society. Multicenter spine fracture study. Spine 17(5):528-40, 1992.
[9] Nguyen HV, Ludwig S, Gelb D. Osteoporotic vertebral burst fracture occurred with neurologic compromise. Journal Spinal Disord Technique 16(1):100-109, 2003.
[10] McRae R, Esser M. Practical fracture treatment. 5th ed. New York : Elsevier Churchill Livingstone, 2008
[11] Dandy DJ, Edwards DJ. Essential orthopaedics and trauma. 4th ed. New York : Churchill Livingstone, 2003.
[12] Goulet JA, Senunas LE, Desilva GL. Autogenous Iliac crest bone graft. Clin Orthop Relat R 339:76-81, 1997.
[13] Nakamura H, Yamano Y, Seki M, Konishi S. Use of folded vascularized rib graft in anterior fusion after treatment of thoracic and upper lumbar lesion. J Neurosurg 94:323-327, 2001.
[14] Beisse R, Muckley T, Schmidt MH, Hauschild M, Buhren V. Surgical technique and results of endoscopic anterior spinal canal decompression. J Neurosurg Spine 2(2):128-36, 2005.
[15] Sciubba DM, Gallia GL, McGirt MJ, Woodworth GF, Garonzik IM, Witham T, Gokaslan ZL, Wolinsky JP. Thoracic kyphotic deformity reduction with a distractible titanium cage via an entirely posterior approach. Neurosurgery 60(2):223-30, 2007.
[16] Thongtrangan I, Balabhadra RS, Le H, Park J, Kim DH. Vertebral Body Replacement With an Expandable Cage for Reconstruction After Spinal Tumor Resection. Neurosurg Focus 15(5):E8, 2003.
[17] Hibbs RH. An operation for progressive spinal deformities, New York Med J 93:1013-1016, 1911.
[18] Macnab I and Dall D. The blood supply of the lumbar spine and its application to the technique of intertransverse lumbar fusion. J Bone Joint Surg 53B(4):628-638, 1971.
[19] Kaden B, Koch W, Wunsch M, Fuhrmann G. Biomechanical studies of transthoracic vertebral body replacement with autologous bone grafts. Neurosurg Rev 19(1):17-21, 1996.
[20] An HS, Lynch K, Toth J. Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen and mixed grafts. J Spinal Disord 8(2):131-135, 1995.
[21] Liljenqvist U, Lerner T, Bullmann V, Hackenberg L, Halm H, Winkelmann W. Titanium cages in the surgical treatment of severe vertebral osteomyelitis. Eur Spine J 12(6):606-612, 2003.
[22] Huang TJ, Hsu RW, Li YY, Cheng CC. Minimal access spinal surgery (MASS) in treating thoracic spine metastasis. Spine 31(16):1860-1863, 2006.
[23] Kumar N, Judith MR, Kumar A, Mishra V, Robert MC. Analysis of stress distribution in lumbar interbody fusion. Spine 30(15):1731-1735, 2005.
[24] Chen HH, Wang WK, Li KC, Chen TH. Biomechanical effects of the body augmenter for reconstruction of the vertebral body. Spine 29(18):382-387, 2004.
[25] Schultheiss M, Hartwing E, Kinzl L, Claes L, Wilke HJ. Axial compression force measurement acting across the strut graft in thoracolumbar instrumentation testing. Clinical Biomechanics 18: 631-636, 2003.
[26] Gurr KR, McAfee PC, Shih CM. Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. Journal of Bone & Joint Surgery - American 70(8):1182-91, 1988.
[27] Shono Y, McAfee PC, Cunningham BW. Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems. Spine 19(15):1711-22, 1994.
[28] Kanayama M, Cunningham BW, Sefter JC, Goldstein JA, Stewart G, Kaneda K, McAfee PC. Does spinal instrumentation influence the healing process of posterolaterl fusion? Spine 24(11):1058-65, 1999.
[29] Cotrel Y and Dubousset J. A new technic for segmental spinal osteosynthesis using the posterior approach. Rev Chir Orthop Reparatrice Appar Mot. 70:489-94, 1984.
[30] Yue JJ, Sossan A, Selgrath C, Deutsch LS, Wilkens K, Testaiuti M, Gabriel JP. The treatment of unstable thoracic spine fractures with transpedicular screw instrumentation: a 3-year consecutive series. Spine 27(24):2782-7, 2002.
[31] Glaser J, Stanley M, Sayre H, Woody J, Found E, Spratt K. A 10-year follow-up evaluation of lumbar spine fusion with pedicle screw fixation. Spine 28(13):1390-5, 2003.
[32] Chou D, Lu DC, Weinstein P, Ames CP. Adjacent-level vertebral body fractures after expandable cage reconstruction. J Neurosurg Spine 8:584-588, 2008.
[33] Huang P, Gupta MC, Sarigul-Klijn N, Hazelwood S. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study. Spine J 6:648-658, 2006.
[34] Sattler M, Goesling T, Busche M, Krettek C, Bastian L. Secondary collapse of an expandable cage after vertebral corpectomy. Eur J Trauma Emerg Surg 33(6):659-661, 2007.
[35] McDonough PW, Davis R, Tribus C, Zdeblick TA. The management of acute thoracolumbar burst fractures with anterior corpectomy and Z-plate fixation. Spine 29(17):1901-1908, 2004.
[36] Schultheiss M, Sarkar M, Kramer M, Wike HJ, Kinzl L, Hartwig E. Solvent- preserved, bovine cancellous bone blocks used for reconstruction of thoracolumbar fractures in minimally invasive spinal surgery-first clinical results. Eur Spine J 14(2):192-196, 2005.
[37] Uchida K, Kobayashi S, Nakajima H, Kokubo Y, Yahama T, Sato R, Timbihurira G, Baba H. Anterior expandable strut cage replacement for osteoporotic thoracolumbar vertebral collapse. J Neurosurg Spine 4(6):454-462, 2006.
[38] Disch AC, Knop C, Schaser KD, Blauth M, Schmoelz W. Angular stable anterior plating following thoracolumbar corpectomy reveals superior segmental stability compared to conventional polyaxial plate fixation. Spine 33(13):1429-37, 2008.
[39] Abumi K, Panjabi MM, Duranceau J. Biomechanical evaluation of spinal fixation devices. III. Stability provided by six spinal fixation devices and interbody bone graft. Spine 14:1249-1255, 1989.
[40] Hitchon PW, Goel VK, Rogge T, Grosland NM, Torner J. Biomechanical studies on two anterior thoracolumbar implants in cadaveric spines. Spine 24:213-218, 1999.
[41] Kanayama M, Ng JTW, Cunningham BW, Abumi K, Kaneda K, McAfee PC. Biomechanical analysis of anterior versus circumferential spinal reconstruction for various anatomic stages of tumor lesions. Spine 24:445-450, 1999.
[42] Oda I, Cunningham BW, Abumi K, Kaneda K, McAfee PC. The stability of reconstruction methods after thoracolumbar total spondylectomy. Spine 24:1634-1638, 1999.
[43] Vahldiek MJ and Panjabi MM. Stability potential of spinal instrumentations in tumor vertebral body replacement surgery. Spine 23:543-550, 1998.
[44] Tan JS, Bailey CS, Dvorak MF, Fisher CG, Oxland TR. Interbody device shape and size are important to strengthen the vertebra-implant interface. Spine 30(6):638-644, 2005.
[45] Rohlmann A, Bergmann G, Graichen F. A spinal fixation device for in vivo load measurement. J Biomech 27:961-967, 1994.
[46] Rohlmann A, Graichen F, Weber U, Bergmann G. Monitoring in vivo implant loads with a telemeterized internal spinal fixation device. Spine 25:2981-2986, 2000.
[47] Hakim NS and King AI. A three-dimensional finite element dynamic response analysis of a vertebra with experimental verification, Journal of Biomechanics 12:277-292, 1979.
[48] Goel VK and Gilbertson LG. Applications of the finite element method to thoracolumbar spinal research-past, present, and future. Spine 520(15):1719-1727, 1998.
[49] Kheng LK, Xia QT, Chon TE, Wan NH, Kai Y. Mathematical modeling of thoracolumbar spine using ANSYS. 4th Asean ansys users conference, Singapore, 5-6 Nov, 2002.
[50] Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4):744-50, 2003.
[51] Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM. Finite element modeling of the human thoracolumbar spine. Spine 28(6):559-65, 2003.
[52] Wilcox RK, Allen DJ, Hall RM, Limb D, Barton DC, Dickson RA. A dynamic study of thoracolumbar burst fractures. Journal of Bone and Joint Surgery American 85(11):2184-2189, 2003.
[53] Tyndyk MA, Barron V, McHugh PE. Effect of osteoporosis on the biomechanics of the thoracolumbar spine: finite element study. European Cells and Materials 10(3):73, 2005.
[54] Tyndyk MA, Barron V, Mchugh PE, O'Mahoney D. Generation of a finite element model of the thoracolumbar spine. Acta of Bioengineering and Biomechanics 9(1), 2007.
[55] Park WM, Kim YH, Kim K, Park YS. Effects of anterior rod number and the removal of mid-column on anterior and posterior instrumentation in thoracolumber burst freacture. 17th Annual symposium on computational methods in orthopaedic biomechanics, 2009.
[56] Zhang QH, Li JZ, Serena Tan HN, Teo EC. A finite element study of the response of thoracolumbar junction to accidental mine blast scenario. APCMBE 2008, IFMBE Proceedings 19:129-132, 2008.
[57] Surachai SJ. The invention of new anterior spinal instrumentation prototype: A structural analysis of KKU expandable cage. J Med Assoc Thai 90(8):1621-6, 2007.
[58] Hsu WH, Chao CK, Hsu HC, Lin J, Hsu CC. Parametric study on the interface pullout strength of the vertebral body replacement cage using FEM-based Taguchi methods. Med Eng Phys 31(3):287-94, 2009.
[59] Chen CS, Cheng CK, Liu CL. A biomechanical comparison of posterlateral fusion and posterior fusion in the lumbar spine. J Spinal Disord Tech 15(1):53-63, 2002.
[60] Joseph AB, Thomas AE, Sheldon RS. Orthopedic Basic Science: Biology and Biomechanics of the Musculoskeletal System, 2000.
[61] Palm WJ, Rosenberg WS, Keaveny TM. Load transfer mechanisms in cylindrical interbody cage constructs. Spine 27(19):2101-7, 2002.
[62] Andersson GB and Schultz AB. Effects of fluid injection on mechanical properties of intervertebral discs. J Biomech 12(6):453-458, 1979.
[63] Schultz AB, Warwick DN, Berkson MH, Nachemson AL. Mechanical properties of human lumbar spine motion segments, Part I: Responses in flexion, extension, lateral bending and torsion. J Biomech Eng 101:46-52, 1979.
[64] Moumene M and Geisler FH. Comparison of biomechanical function at ideal and varied surgical placement for two lumbar artificial disc implant designs: mobile-core versus fixed-core. Spine 32(17):1840-51, 2007.
[65] Silva MJ, Wang C, Keaveny TM, Hayes WC. Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate. Bone 15(4): 409-414, 1994.
[66] Denoziere G. Numerical modeling of a ligamentous lumbar motion segment. M.D. dissertation, Georgia I.T., 2004.
[67] Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am 58:82-6, 1976.
[68] Polikeit A. Finite element analysis of the lumbar spine: Clinical application. Inaugural dissertation, University of Bern, 2002.
[69] Pitzen T, Geisler FH, Matthis D, Storz HM, Pedersen K, Steudel WI. The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment. Eur Spine J 10:23-29, 2001.
[70] Shin G. Viscoelastic responses of the lumbar spine during prolonged stooping. Ph.D. dissertation, NCSU, USA, 2005.
[71] Sairyo K, Goel VK, Masuda A, Vishnubhotla S, Faizan A, Biyani A, Ebraheim N, Yonekura D, Murakami RI, Terai T. Three-dimensional finite element analysis of the pediatric lumbar spine. Eur Spine J 15:923-929, 2006.
[72] Mosekilde L and Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals, Bone 8:79-85, 1987.
[73] Natarajan RN and Andersson GBJ. Modeling the annular incision in a herniated lumbar intervertebral disc to study its effect on disc stability. Computers Structures 64(5-6):1291-1297, 1997.
[74] Hirsch C. The reaction of intervertebral discs to compression forces. J Bone Joint Surg 37A:1188, 1955.
[75] Goel VK, Kim YE, Lim TH, Weinstein JN. An analytical investigation of the mechanics of spinal instrumentation. Spine 13(9):1003-11, 1988.
[76] Rohlmann A, Burra NK, Zander T, Bergmann G. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine. Eur Spine J 16(8):1223-31, 2007.
[77] Ueno K and Liu YK. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion. J Biomech Eng 109:200-9, 1987.
[78] Natarajan RN and Andersson GB. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine 24:1873-81, 1999.
[79] Cao KD, Grimm MJ, Yang KH. Load sharing within a human lumbar vertebral body using the finite element method. Spine 26:E253-60, 2001.
[80] Brickley-Parsons D, Glimcher MJ. Is the chemistry of collagen in intervertebral discs an expression of Wolff’s Law? A study of the human lumbar spine. Spine 9:148-63, 1984.
[81] Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, Vanneuville G. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J Biomech 18:167-76, 1985.
[82] Dumas GA, Beaudoin L, Drouin G. In situ mechanical behavior of posterior spinal ligaments in the lumbar region: an in vitro study. J Biomech 20:301-10, 1987.
[83] Mosekilde L and Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8:79-85, 1987.
[84] Sharma M, Langrana NA, Rodriguez J. Role of ligaments and facets in lumbar spinal stability. Spine 20:887-900, 1995.
[85] Goel VK, Kong W, Han JS, Weinstein JN. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine 18(11):1531-154, 1993.
[86] Kong WZ and Goel VK. Ability of the finite element models to predict response of the human spine to sinusoidal vertical vibration. Spine 28(17):1961-67, 2003.
[87] Polikeit A, Ferguson SJ, Nolte LP, Orr TE. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 12(4):413-420, 2002.
[88] 王微凱,胸腰椎爆裂性骨折固定方式之有限元素法分析,國立陽明大學醫學工程所碩士論文,2005.
[89] 陳振昇,腰椎固定後鄰近處之應力分析.國立陽明大學醫學工程所碩士論文, 1997.
[90] Hitchon PW, Bernton MD, Serhan H, Goel VK, Torner JC. In vitro biomechanical studies of an anterior thoracolumbar implant. Journal of Spinal Disorders & Techniques 15(5):350-354, 2002.
[91] Pflugmacher R, Schleicher P, Schaefer J, Scholz M, Ludwig K, Hass NP, Kandziora F. Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine. Spine 29(13):1413-1419, 2004.
[92] Yamamoto I, Panjabi MM, Crisco T, Oxland T. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14(11):1256-60, 1989.
[93] Cardoso MJ, Dmitriev AE, Helgeson M, Lehman RA, Kuklo TR, Rosner MK. Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation? An in vitro human cadaveric assessment. Spine 33(26):2868-73, 2008.
[94] Polikeit A, Ferguson SJ, Nolte LP, Orr TE. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 12:413-20, 2002.
[95] Parker JW, Lane JR, Karaikovic EE, Gaines RW. Successful short-segment instrumentation and fusion for thoracolumbar spine fractures: a consecutive 4 1/2-year series. Spine 25(9):1157-1170, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊