跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 01:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉日昇
研究生(外文):Jih-Sheng Liu
論文名稱:多通道ERG訊號放大器及電極之製作
論文名稱(外文):Design and Implementation of Multi-channel ERG Electrode and Amplifier
指導教授:張寅張寅引用關係
指導教授(外文):Yin Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:68
中文關鍵詞:視網膜電圖
外文關鍵詞:ERG
相關次數:
  • 被引用被引用:1
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
目的:
傳統之ERG電極通常使用一個金屬外環做為和眼球表面接觸的介面,且只能送出單一個視網膜訊號,也因此只能從單一筆訊號來作分析,此一訊號只能顯示出視網膜功能是否正常,有無病變,但我們無法具體得知其病變區塊及位置;因此我們做了一個假設,如果將電極通道增加,並且在不同位置佈置獨立的電極,使每個通道所接收到之訊號有所不同,或許能夠幫助我們分析以及判斷更具體的視網膜病變區堿及位置。

方法:
設計一放大約3500倍之電路系統,透過NI DAQ資料擷取卡,將ERG訊號放大後即時記錄至電腦。此濾波電路系統之頻寬為100m Hz ~ 200 Hz,並在電路設計完成後利用PSpice做訊號模擬,以及在電路實體完成後利用訊號產生器與示波器做波形檢測及放大倍率校正。
量測電極方面,係利用一絕緣之粗漆包線繞成一直徑約10mm之圓環,再利用細裸線圍著圓環纏繞六個相同之電極接觸面,此即為與角膜接觸之電極,最後再將電極與導線連結,實現多通道之ERG電極。老鼠之電極則係採用一白金或純銀之導線,將其繞成直徑約5mm之圓圈,再將其固定在一空針筒前端,連結導線至電路接收端。
利用上述之多通道及單通道電極分別對兔子及老鼠做ERG量測,並利用電腦軟體觀察其波形,收集ERG訊號之波形及數據以做分析。




結果:
最初之電氣檢驗中發現各通道之訊號,在放大倍率上有些微誤差之情況,於是在各通道電路最後級加上一可調之放大電路,以此做實驗前校正之工作,並以此方法經多次檢驗後已能將電路放大倍率之誤差降至最低。
經過多次兔子及老鼠之實驗後,發現量測到的ERG訊號與實驗室的單一通道放大器所得到之ERG訊號並無太大差異,並且此系統可確實同時記錄到多筆的ERG訊號,並做適當之放大(3500倍),在硬體空間及操作的整合上有很大的改良。

結論:
本研究之ERG量測電路系統,已可取代目前所使用之龐大電子儀器系統,從動物實驗過程中也證實了此的ERG量測系統確實能擷取到正確之ERG訊號,並且將改良至可同時記錄6~8筆訊號,大大改善舊系統只能記錄2筆訊號之缺點,提升了日後在ERG量測研究之便利性。
另一方面,即是將傳統之單一通道ERG電極,發展成多個通道之電極,希望藉由這樣多通道的量測,能夠在將來建立起完整的資料庫,
從目前之動物量測至未來的人體實驗,並且能夠得到在臨床上有意義之數據,以利未來之眼部醫療診斷及研究。
Objective:
In most of time, conventional electrode uses metal circular wreath as the interface which is connected to eyeball surface. The circular electrode picks up the summarized physiological signal surrounding the eyeball. However, the inseparable nature of the circular electrode which mixes up the signal from multiple sites makes detailed localization on eyeball difficult. In this thesis we hypothesize that measuring signals from multiple channels on the eyeball is beneficial for the diagnosis of the location of the retinopathy area.

Method:
We designed a circuit system with about 3,500 times magnification,through NI DAQ data acquisition,amplifying the ERG signal and then recording into the computer program immediately. The frequency range of this filter circuit system is between 100m Hz (hertz) to 200m Hz. Then we were performing a signal simulation with P-Spice after the circuit system designing has been accomplished, and then we used signal producer and oscillograph performing wave detection and magnification power adjusting after the substance has been manufactured.
As the measuring electrode, we used an isolated thick magnet wire stringing into a ring about 10 mm in diameter, and then used a thin electric wire circling the ring and stringing into the six same electrode contacting surface. This surface is which the contact to cornea. At last, we connected the electrode to the electric wire to becoming a multi-channel ERG electrode. The ERG electrode we use for rat is made of platinum or silver electric wire, stringing into a 5 mm circle in diameter, and fixing onto the fore side of an empty syringe, connecting the electric wire to the circuit receive side.
We used the above-mentioned multiple channel electrode to rabbit and single channel to rat respectively for ERG measuring, and used computer software to observe the wave shape. Collecting the wave shape and data of the ERG signals to analyses.

Result:
In preceding electronic examinations, we discovered the condition that each channel has any inaccuracy in magnification. So we add an adjustable amplifying circuit to the last grade of each channel as the modifying work before each experiment. And after several times scrutinizing, the method can reduce the magnification inaccuracy into the lowest.
After several times rabbit and rat experiments, discovering the ERG signals we measured has no significant difference between the single channel amplifier in lab. The system can record several ERG signals simultaneously and magnifying appropriately, and has great improvement in hardware space and operative integration.
Conclusion:
About the ERG measurement system of this studying, it can substitute for the huge electronic instrumentation system presently, from the animal experimentation, it proves that we can collects exactly ERG signal by uses our ERG measurement system, it is also improve to record 6~8 signals simultaneously. It is improves the shortcomings of the old system for only record 2 signals simultaneously, and make more conveniently for ERG measuring in the future.
In addition, to improve the single channel ERG electrode to be a multi-channel ERG electrode, with this newly developed system, we expect to establish the database of multi-channel ERG data.
Furthermore, we would like to move from animal experiment to human application in the future, and collect some data on the clinical experimentations in order to help the medical diagnosis and research of the ocular region.
中文摘要 ----------------------------------------------------------- I
Abstract ---------------------------------------------------------- III
目錄 -------------------------------------------------------------- VI
圖目錄 ----------------------------------------------------------- VII
表目錄 ------------------------------------------------------------ IX
第一章 緒論 ------------------------------------------------------ 01
1-1 前言 ----------------------------------------------------- 01
1-2 研究動機 ------------------------------------------------- 01
1-3 視網膜電圖之文獻回顧 ------------------------------------- 03
第二章 原理與相關研究 -------------------------------------------- 07
2-1 視網膜電圖產生之機制 ------------------------------------- 07
2-2 視網膜電圖傳導路徑之量測 --------------------------------- 11
第三章 實驗方法 -------------------------------------------------- 13
3-1 生理訊號放大器之設計與製作 ------------------------------- 14
3-2 Flash LED 刺激電路之設計與製作 ---------------------------- 30
3-3 PERG量測刺激電路之設計與製作 ----------------------------- 32
3-4 ERG電極之設計與製作 -------------------------------------- 37
3-5 ERG量測實驗流程 ------------------------------------------ 40
第四章 實驗結果 -------------------------------------------------- 43
4-1 Rat之FLASH ERG 單眼量測結果 ------------------------------ 44
4-2 Rat之FLASH ERG 雙眼量測結果 ------------------------------ 46
4-3 Rat之Pattern ERG量測結果 -------------------------------- 50
4-4 紐西蘭大白兔之6通道ERG量測結果 -------------------------- 53
第五章 討論 ------------------------------------------------------ 58
5-1 Rat的品系不同對ERG訊號之影響 ---------------------------- 58
5-2 與Grass放大系統做ERG量測之比對 ------------------------- 60
5-3 電極接觸之差異對量測結果的影響 --------------------------- 61
5-4 實驗動物之麻醉藥量 --------------------------------------- 61
5-5 實驗用之藥劑及受測體之淚液之影響 ------------------------- 61
第六章 結論與未來展望 -------------------------------------------- 62
第七章 參考文獻 -------------------------------------------------- 63
附錄一 ------------------------------------------------------------ 66
[1] F.Blockt and M.Schwarz, “The b-Wave of the Electroretinogram as an Index of Retinal Ischemia”, 1998
[2] Takashi Okuno, Hidehiro Oku, Tsunehiko Ikeda, ”The reproducibility and sensitivity of visual evoked potential testing in rabbits”, Neuro-Ophthalmol.26(1),59~66,2002.
[3] James Dewar, and Jahn G.M cKendrick, “The physiology action of light”,Ⅰ,Ⅱ,Nature, 15,433~435,452~454,1877.
[4] Francis Gotch, “The time relations of the photo-electric changes in the eye ball of the frog”, J. of physiol.,29,388~416,1903.
[5] W.Einthoven and W.A. Jolly, ”The form and magnitude of the electrical response of the eye to stimulation by light at varies intensities”, J. Exp. Physiol. 1:373-416,1908.
[6] Brindly,G.S. “The passive electrical properties of the frog’s retina, choroid and sclera for redial fields of currents”, Journal of Physiology,1956,134,339~352
[7] R.W. RODIECK and R.W. FORD, “The cat local electroretinogram to incremental stimuli”, Vision Res.,Vol. 9, pp.1~24, 1969.
[8] Jaakko Malmivuo, Robert, “PlonseyBioelectromagnetism-The Electric Signals Originating in the Eye”, Oxford University Press, 1995
[9] “All You Ever Wanted to Know About ERG but Were Afraid to Ask American Academy of Ophthalmology”, Orlando, 2002 (教學講義)
[10] R.W. RODIECK and R.W. FORD, ”The cat local electroretinogram to incremental stimuli.”, Vision Res.,Vol. 9, pp.1~24, 1969

[11] “The Origin of Biopotentials”, Ch4 , Ming Chuan University (教學講義)
[12] 牛正基 伍貽楷 鄧建甫, “A Study of Corrective Contact Lens Modified Electrode in Focal Electroetinography---(IV) Use of LED Array and Microprocessor Control as Light Source Image for Electroretinography”, Department of Biomedical Engineering, I-Shou University
[13] 謝景棠 謝廣霖 洪國銘 吳家榮, “基於混合訊號處理的嵌入式霍特心電圖機設計”, 淡江大學電機工程學系 開南管理學院資訊管理 學系 龍華科技大學電子工程學系,2005
[14] 余繼鋒, “正常豚鼠視網膜電圖的特點及記錄方法”, 第二炮兵總醫院眼科, 2005,12
[15] 王仕軍 彭承琳 陰正勤, “圖形視網膜電圖記錄電極的研製”, 第三軍醫大學學報,Vol. 26, No.13 1217~1218 Jul 2004
[16] 肖建和 張卯年, “色素兔和白兔ERG之比較”, 解放軍總醫院,北京100853, 軍醫進修學院學報,25(I)11~14 Feb 2004
[17] 林維暘, “以雷射閃爍式視網膜電圖作光感細胞的研究”, 國立陽明大學醫工所,1995,6
[18] 周宗翰, “視網膜電圖的確實傳導路徑”, 國立陽明大學醫所,2005,6
[19] 張凱雄 楊俊哲 莊政陽 鍾佳詔 楊明興, “心音與心電圖量測系統設計”,國立成功大學電機工程研究所,2005
[20] 陳中政 陳明煌 捐文正 陳彥 侯政廷 徐坤良 劉昆霖 梁欽富 顏成哲, “網路醫療監控心電圖系統”, 國立虎尾科技大學電機工程系,2005
[21] 曾聰傑, “應用於植入視網膜晶片之可程式脈衝寬度調變雙極性電流刺激電路”, 國立東華大學電機工程研究所,2007

[22] 秦龍, “MSP430单片机常用模块与綜合系統实例精讲”, 北京電子工業出版社, 2007
[23] 沈建華 杨艷琴 翟驍曙, “MSP430系列16位超低功耗单片机实踐与系統设计”, 北京清華大學出版社,2005
[24] 2005年「民生電子暨信號處理研討會」-“可攜式網路醫療監控心電圖系統”
[25] “ECG Front-End Design is Simplified with MicroConverter”, Analog Dialogue 37-11, November 2003
[26]醫學全在線 http://www.med126.com/edu/200810/25247_3.shtml
[27] http://www-mci.u-strasbg.fr/service_3_1.html
[28] http://www.iscev.org/standards/erg1999.html
[29] http://webvision.med.utah.edu/index.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top