跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/26 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱珮玲
研究生(外文):Pei-Ling Chiu
論文名稱:口腔鱗狀癌細胞IFIT2基因表現於上皮間質轉化扮演的角色
論文名稱(外文):The roles of IFIT2 expression in Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinomas
指導教授:李德章李德章引用關係
指導教授(外文):Te-Chang Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:57
中文關鍵詞:上皮間質轉化IFIT2基因NF-kBB-catenin
外文關鍵詞:EMTIFIT2NF-kBB-catenin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
根據流行病學資料顯示,口腔鱗狀上皮癌病患遍及全球。於2008年根據我國行政院衛生署統計口腔鱗狀上皮癌位居國人癌症死亡率第六位,更高居男性癌症死亡率第四位。表皮間質轉化過程對於表皮細胞轉化為間質細胞在細胞型態中扮演重要角色。正常生理功能中,表皮間質轉化過程常見於胚胎發育; 近年研究更將表皮間質轉化過程視為癌症轉移的起始步驟。可受到干擾素的誘導表現的IFIT2 基因,也被稱為干擾素誘導基因,於先前實驗室的研究中被發現其高表現量與口腔鱗狀上皮癌症病患有較佳的預後相關性。同時,其研究也發現,藉由抑制此基因在口腔鱗狀上皮細胞株的表現會增加細胞的移動能力,顯示此基因的表現量可能在口腔鱗狀上皮細胞移動能力上扮演重要角色。然而,對此基因的表現量如何影響細胞移動能力仍不清楚。為探討IFIT2基因是否藉由表皮間質轉化過程而改變了細胞移動能力,首先利用干擾核酸抑制口腔鱗狀上皮細胞中IFIT2基因,並觀察細胞是否出現表皮間質轉化過程的特性。 實驗結果顯示,在口腔鱗狀上皮細胞抑制IFIT2基因之mRNA核酸與蛋白質的表現會使得細胞出現類似間質細胞的細胞型態,而表皮細胞的標記蛋白質表現量明顯下降,間質細胞的標記蛋白質表現量增加,細胞的侵襲能力也有上升的趨勢。在文獻提出常見的調控表皮細胞的標記蛋白質轉錄調控因子中,於實驗結果發現當IFIT2表現減少,B-catenin及其下游 Twist 蛋白質除表現量增加之外,亦有進入細胞核的現象; Snail蛋白質表現量雖無顯著差異,但其亦可進入細胞核的現象。此外,抑制IFIT2基因會使NF-KB活化,並可能促使下游基因ZEB2表現量增加與進入細胞核。 綜合以上發現,於口腔鱗狀上皮細胞抑制IFIT2基因,可能會使得��-catenin與NF-�羠兩條訊息傳遞路徑活化,而進一步促使表皮間質轉化蛋白質使得表皮細胞的移動能力出現增加的趨勢。
Oral squamous cell carcinoma (OSCC), the most frequent malignant tumor of the oral cavity, is one of the major health-care dilemmas in the world. In Taiwan, the oral cancer mortality has been ranked at the 6th in the total cancer patient, but at the 4th place in male in 2008. Epithelial-mesenchymal transitions (EMT), a process whereby epithelial cell layers lose cell-cell contacts and undergo a dramatic remodeling of the cytoskeleton, is vital for morphogenesis. Interferon-induced protein with tetratricopeptide repearts 2 (IFIT2), was shown to be one of most responsive interferon stimulating genes (ISGs) to interferons and viruses, has shown an association between elevated IFIT2 expression and better prognosis in patients with OSCC and an inverse correlation between IFIT2 expression and cell migration. However, whether IFIT2 expression is associated with EMT of OSCC is unknown. In this study, si-IFIT2 oligonucleotide was to suppress E-cadherin but acquire vimentin expression. Meanwhile, EMT phenotype was observed and invasion ability was increased in cells knocking down IFIT2. Moreover, the protein levels of β-catenin and Twist were both increased in 48 hr and 72 hr. Nuclear translocation of β-catenin was found in si-IFIT2 group in 48 hr. Twist was also translocated into nucleus when IFIT2 was knockdown in 48 hr and 72 hr. Downregulation of IFIT2 significantly enhanced ZEB2 expression and nuclear translocation in 72 hr. Furthermore, si-IFIT2 transfection leaded to NF-�羠 activation both in 48 hr and 72 hr. Taken together, the present results suggest that IFIT2 expression is inversely associated with EMT and cell invasion ability which may mediate through activation of ��-catenin and NF-�羠 pathways.
Contents
Thesis Approval Form i
Acknowledgments vi
Chinese Abstract 1
Abstract 2
Introduction 3
Oral cancer 3
Oral carcinogenesis 6
Epithelial-mesenchymal transitions (EMT) 7
Molecular regulation of EMT 7
Interferon (IFNs) 12
Interferon-induced protein with tetratricopeptide repearts 2 (IFIT2) 14
Aims 15
Materials and Methods 16
Antibodies 16
Cell culture 16
RNA interference 16
Western blot analysis 17
RNA isolation 18
Reverse Transcription 18
Real-time PCR analysis 18
Immunohistochemical Staining 19
Transwell invasion assay 19
Immunoprecipitation 20
NF-κB activity assay 20
Statistical Method 21
Results 22
Downregulate IFIT2 induces changes of morphology and EMT markers 22
si-IFIT2 enhances the expression of b-catenin 23
si-IFIT2 enhances the Twist expression and nuclear translocation 24
Downregulation of IFIT2 induces Snail translocation 24
si-IFIT2 enhances the ZEB2/SIP1 expression and nuclear translocation 25
si-IFIT2 transfection leads to NF-kB activation 25
Discussion 27
References 33
Table 1. Ranking of Cancer mortality 39
Table 2. Primers for Real-time PCR analysis 40
Figures 41
1. Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., and Garcia De Herreros, A. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2, 84-89.
2. Bishop, J.M. (1991). Molecular themes in oncogenesis. Cell 64, 235-248.
3. Borden, E.C., Sen, G.C., Uze, G., Silverman, R.H., Ransohoff, R.M., Foster, G.R., and Stark, G.R. (2007). Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 6, 975-990.
4. Boyer, B., and Thiery, J.P. (1993). Epithelium-mesenchyme interconversion as example of epithelial plasticity. Apmis 101, 257-268.
5. Carver, E.A., Jiang, R., Lan, Y., Oram, K.F., and Gridley, T. (2001). The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 21, 8184-8188.
6. Castanon, I., and Baylies, M.K. (2002). A Twist in fate: evolutionary comparison of Twist structure and function. Gene 287, 11-22.
7. Chen, C., Ware, S.M., Sato, A., Houston-Hawkins, D.E., Habas, R., Matzuk, M.M., Shen, M.M., and Brown, C.W. (2006). The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development 133, 319-329.
8. Chua, H.L., Bhat-Nakshatri, P., Clare, S.E., Morimiya, A., Badve, S., and Nakshatri, H. (2007). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26, 711-724.
9. Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D., and van Roy, F. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7, 1267-1278.
10. Correia, A.C., Costa, M., Moraes, F., Bom, J., Novoa, A., and Mallo, M. (2007). Bmp2 is required for migration but not for induction of neural crest cells in the mouse. Dev Dyn 236, 2493-2501.
11. D'Andrea, L.D., and Regan, L. (2003). TPR proteins: the versatile helix. Trends Biochem Sci 28, 655-662.
12. Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., Berx, G., Cano, A., Beug, H., and Foisner, R. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24, 2375-2385.
13. Fan, F., and Wood, K.V. (2007). Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol 5, 127-136.
14. Fong, C.J., Sutkowski, D.M., Kozlowski, J.M., and Lee, C. (1992). Utilization of the Boyden chamber to further characterize in vitro migration and invasion of benign and malignant human prostatic epithelial cells. Invasion Metastasis 12, 264-274.
15. Forastiere, A., Koch, W., Trotti, A., and Sidransky, D. (2001). Head and neck cancer. N Engl J Med 345, 1890-1900.
16. Fukumoto, S., Hsieh, C.M., Maemura, K., Layne, M.D., Yet, S.F., Lee, K.H., Matsui, T., Rosenzweig, A., Taylor, W.G., Rubin, J.S., Perrella, M. A. Lee, M. E.. (2001). Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem 276, 17479-17483.
17. Garber, K. (2008). Epithelial-to-mesenchymal transition is important to metastasis, but questions remain. J Natl Cancer Inst 100, 232-233, 239.
18. Ghosh, S., and Karin, M. (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl, S81-96.
19. Gilles, C., Polette, M., Mestdagt, M., Nawrocki-Raby, B., Ruggeri, P., Birembaut, P., and Foidart, J.M. (2003). Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res 63, 2658-2664.
20. Giroldi, L.A., Bringuier, P.P., de Weijert, M., Jansen, C., van Bokhoven, A., and Schalken, J.A. (1997). Role of E boxes in the repression of E-cadherin expression. Biochem Biophys Res Commun 241, 453-458.
21. Goebl, M., and Yanagida, M. (1991). The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci 16, 173-177.
22. Grunert, S., Jechlinger, M., and Beug, H. (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4, 657-665.
23. Hoek, K., Rimm, D.L., Williams, K.R., Zhao, H., Ariyan, S., Lin, A., Kluger, H.M., Berger, A.J., Cheng, E., Trombetta, E.S., Wu, T. Niinobe, M. Yoshikawa, K. Hannigan, G. E. Halaban, R. . (2004). Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 64, 5270-5282.
24. Hoffmann, D., Brunnemann, K.D., Prokopczyk, B., and Djordjevic, M.V. (1994). Tobacco-specific N-nitrosamines and Areca-derived N-nitrosamines: chemistry, biochemistry, carcinogenicity, and relevance to humans. J Toxicol Environ Health 41, 1-52.
25. Huber, M.A., Azoitei, N., Baumann, B., Grunert, S., Sommer, A., Pehamberger, H., Kraut, N., Beug, H., and Wirth, T. (2004). NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114, 569-581.
26. Hugo, H., Ackland, M.L., Blick, T., Lawrence, M.G., Clements, J.A., Williams, E.D., and Thompson, E.W. (2007). Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol 213, 374-383.
27. Itoh, S., Morita, S., Ohnishi, T., Tsuji, A., Takamatsu, M., and Horimi, T. (2002). [Preliminary clinical evaluation of low-dose cisplatin and continuous infusion of 5-FU (LFP) chemotherapy after weekly high-dose 5-FU therapy for the treatment of liver metastases from colorectal cancer]. Gan To Kagaku Ryoho 29, 1167-1170.
28. Kang, Y., and Massague, J. (2004). Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118, 277-279.
29. Kim, H.J., Litzenburger, B.C., Cui, X., Delgado, D.A., Grabiner, B.C., Lin, X., Lewis, M.T., Gottardis, M.M., Wong, T.W., Attar, R.M., Carboni, J. M. Lee, A. V. . (2007). Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 27, 3165-3175.
30. Ko, Y.C., Huang, Y.L., Lee, C.H., Chen, M.J., Lin, L.M., and Tsai, C.C. (1995). Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med 24, 450-453.
31. Kwok, W.K., Ling, M.T., Lee, T.W., Lau, T.C., Zhou, C., Zhang, X., Chua, C.W., Chan, K.W., Chan, F.L., Glackin, C., Wong, Y. C. Wang, X. (2005). Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res 65, 5153-5162.
32. Lai, K.C., Chang, K.W., Liu, C.J., Kao, S.Y., and Lee, T.C. (2008). IFN-induced protein with tetratricopeptide repeats 2 inhibits migration activity and increases survival of oral squamous cell carcinoma. Mol Cancer Res 6, 1431-1439.
33. Larue, L., and Bellacosa, A. (2005). Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene 24, 7443-7454.
34. Liebner, S., Cattelino, A., Gallini, R., Rudini, N., Iurlaro, M., Piccolo, S., and Dejana, E. (2004). Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166, 359-367.
35. Liu, P., Wakamiya, M., Shea, M.J., Albrecht, U., Behringer, R.R., and Bradley, A. (1999). Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22, 361-365.
36. Lorenz, W.W., McCann, R.O., Longiaru, M., and Cormier, M.J. (1991). Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A 88, 4438-4442.
37. Maeda, G., Chiba, T., Okazaki, M., Satoh, T., Taya, Y., Aoba, T., Kato, K., Kawashiri, S., and Imai, K. (2005). Expression of SIP1 in oral squamous cell carcinomas: implications for E-cadherin expression and tumor progression. Int J Oncol 27, 1535-1541.
38. Martin, L.M., Bouquot, J.E., Wingo, P.A., and Heath, C.W., Jr. (1996). Cancer prevention in the dental practice: oral cancer screening and tobacco cessation advice. J Public Health Dent 56, 336-340.
39. Mercado-Pimentel, M.E., and Runyan, R.B. (2007). Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185, 146-156.
40. Min, C., Eddy, S.F., Sherr, D.H., and Sonenshein, G.E. (2008). NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 104, 733-744.
41. Miyamoto, H., Altuwaijri, S., Cai, Y., Messing, E.M., and Chang, C. (2005). Inhibition of the Akt, cyclooxygenase-2, and matrix metalloproteinase-9 pathways in combination with androgen deprivation therapy: potential therapeutic approaches for prostate cancer. Mol Carcinog 44, 1-10.
42. Montesano, R., Matsumoto, K., Nakamura, T., and Orci, L. (1991). Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901-908.
43. Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., Tashiro, K., and Shimizu, S. (1989). Molecular cloning and expression of human hepatocyte growth factor. Nature 342, 440-443.
44. Nguyen, L.H., Espert, L., Mechti, N., and Wilson, D.M., 3rd (2001). The human interferon-g and estrogen-regulated ISG20/HEM45 gene product degrades single-stranded RNA and DNA in vitro. Biochemistry 40, 7174-7179.
45. Nieto, M.A. (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3, 155-166.
46. Onder, T.T., Gupta, P.B., Mani, S.A., Yang, J., Lander, E.S., and Weinberg, R.A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68, 3645-3654.
47. Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics, 2002. CA Cancer J Clin 55, 74-108.
48. Patel, S.G., and Shah, J.P. (2005). TNM staging of cancers of the head and neck: striving for uniformity among diversity. CA Cancer J Clin 55, 242-258; quiz 261-242, 264.
49. Perez-Moreno, M., Jamora, C., and Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535-548.
50. Preston-Martin, S. (1991). Evaluation of the evidence that tobacco-specific nitrosamines (TSNA) cause cancer in humans. Crit Rev Toxicol 21, 295-298.
51. Rosivatz, E., Becker, I., Specht, K., Fricke, E., Luber, B., Busch, R., Hofler, H., and Becker, K.F. (2002). Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 161, 1881-1891.
52. Sand, L.P., Jalouli, J., Larsson, P.A., and Hirsch, J.M. (2002). Prevalence of Epstein-Barr virus in oral squamous cell carcinoma, oral lichen planus, and normal oral mucosa. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93, 586-592.
53. Solanas, G., Porta-de-la-Riva, M., Agusti, C., Casagolda, D., Sanchez-Aguilera, F., Larriba, M.J., Pons, F., Peiro, S., Escriva, M., Munoz, A., Dunach, M. de Herreros, A. G. Baulida, J. (2008). E-cadherin controls beta-catenin and NF-kappaB transcriptional activity in mesenchymal gene expression. J Cell Sci 121, 2224-2234.
54. Sonnenberg, E., Meyer, D., Weidner, K.M., and Birchmeier, C. (1993). Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 123, 223-235.
55. Stoker, M., Gherardi, E., Perryman, M., and Gray, J. (1987). Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327, 239-242.
56. Su, P.F., Hu, Y.J., Ho, I.C., Cheng, Y.M., and Lee, T.C. (2006). Distinct gene expression profiles in immortalized human urothelial cells exposed to inorganic arsenite and its methylated trivalent metabolites. Environ Health Perspect 114, 394-403.
57. Terenzi, F., Hui, D.J., Merrick, W.C., and Sen, G.C. (2006). Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56. J Biol Chem 281, 34064-34071.
58. Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2, 442-454.
59. Thomas, S.M., DeMarco, M., D'Arcangelo, G., Halegoua, S., and Brugge, J.S. (1992). Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68, 1031-1040.
60. Tian, Q., Feetham, M.C., Tao, W.A., He, X.C., Li, L., Aebersold, R., and Hood, L. (2004). Proteomic analysis identifies that 14-3-3zeta interacts with beta-catenin and facilitates its activation by Akt. Proc Natl Acad Sci U S A 101, 15370-15375.
61. Ulker, N., Zhang, X., and Samuel, C.E. (1987). Mechanism of interferon action. I. Characterization of a 54-kDa protein induced by gamma interferon with properties similar to a cytoskeletal component. J Biol Chem 262, 16798-16803.
62. Vandewalle, C., Comijn, J., De Craene, B., Vermassen, P., Bruyneel, E., Andersen, H., Tulchinsky, E., Van Roy, F., and Berx, G. (2005). SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 33, 6566-6578.
63. Wang, X., Belguise, K., Kersual, N., Kirsch, K.H., Mineva, N.D., Galtier, F., Chalbos, D., and Sonenshein, G.E. (2007). Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 9, 470-478.
64. Watanabe, O., Imamura, H., Shimizu, T., Kinoshita, J., Okabe, T., Hirano, A., Yoshimatsu, K., Konno, S., Aiba, M., and Ogawa, K. (2004). Expression of twist and wnt in human breast cancer. Anticancer Res 24, 3851-3856.
65. Weidner, K.M., Sachs, M., and Birchmeier, W. (1993). The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J Cell Biol 121, 145-154.
66. Williams, B.R. (1991). Transcriptional regulation of interferon-stimulated genes. Eur J Biochem 200, 1-11.
67. Williams, B.R. (1999). PKR; a sentinel kinase for cellular stress. Oncogene 18, 6112-6120.
68. Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939.
69. Yang, J., and Weinberg, R.A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14, 818-829.
70. Yang, M.H., and Wu, K.J. (2008). TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development. Cell Cycle 7, 2090-2096.
71. Yang, M.H., Wu, M.Z., Chiou, S.H., Chen, P.M., Chang, S.Y., Liu, C.J., Teng, S.C., and Wu, K.J. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10, 295-305.
72. Zor, T., and Selinger, Z. (1996). Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem 236, 302-308.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 多醣聚合物改變肺癌及乳癌細胞之上皮-間質轉化過程並且具有抑制小鼠腫瘤大小之效用
2. SCUBE3在TGF-β訊號傳遞與肺腺癌上皮間質轉變所扮演角色之研究
3. 長期暴露檳榔萃取物於角質上皮細胞之基因毒性及IFIT2調控口腔癌細胞移行之角色
4. 探討經由非上皮細胞間質轉化的頭頸癌轉移機制
5. 上皮細胞中胚轉化訊息傳遞途徑引發頭頸癌cisplatin抗藥性之研究
6. p53可經由MDM2及Slug之複合體而控制癌細胞之侵襲能力
7. Cyclooxygenase-2/ProstaglandinE2路徑參與檳榔子水萃取物處理口腔鱗狀細胞癌細胞株後所誘發的EMT相關表型
8. 造骨蛋白透過上皮間質細胞轉換的分子機制以促進乳癌細胞移動之探討
9. 上皮細胞間質轉化轉錄因子Snail誘發大腸直腸癌幹細胞特性及抗治療特性
10. 軟性基質降低近端管狀上皮細胞beta1integrin的表現且抑制轉化生長因子beta1所誘導的上皮-間質細胞轉化
11. 胸腺素beta4藉由活化Integrin-LinkedKinase引起大腸癌細胞之上皮-間葉轉型
12. 降低致癌蛋白MCT-1 表現抑制A549 肺腺癌細胞的上皮-間質轉型
13. 褐藻糖膠在人類乳癌細胞中藉由提升泛素化TGFβ受器降解而降低TGFβ所引起的上皮-間質轉化過程
14. 探討新穎雙功能烷化類抗癌藥3a-aza-cyclopenta[a]indenes衍生物之抗癌作用及機轉
15. LongFormCollapsinResponseMediatorProtein-1(LCRMP-1)在肺癌轉移之角色探討及研究