跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/07/30 02:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林義棠
研究生(外文):Yi-Tang Lin
論文名稱:天然物抑制澱粉樣蛋白纖維刺激血小板凝集活性之分析
論文名稱(外文):Analysis of inhibitory effects of nature products on beta-amyloid fibril-induced platelet aggregation
指導教授:蔡維人蔡維人引用關係廖志飛廖志飛引用關係
指導教授(外文):Wei-Jern TsaiJyh-Fei Liao
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:65
中文關鍵詞:血小板澱粉樣蛋白纖維凝集
外文關鍵詞:plateletbeta-amyloidaggregation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
研究指出阿茲海默氏症、腦血管疾病的發展可能與血小板有關,這兩類疾病的主要病理特徵分別為老年斑塊產生以及血管澱粉樣病變,它們又與乙型澱粉蛋白 (β-amyliod;Aβ) 生成和代謝異常有極大的關聯性。Aβ 為 40-42 個氨基酸的胜肽,許多研究指出 Aβ25-35 為最主要造成毒性的片段,它們的堆積可以造成神經細胞的死亡及誘導免疫細胞的發炎活化。近期有研究發現隨著年紀增加會有血小板易活化的現象,甚至於在阿茲海默氏症患者身上發現:除了 Aβ 沈積參與的血管與腦神經的損傷外,周邊血小板也是處於易活化的的狀態。另一方面有研究指出,Aβ 不僅能刺激血小板活化,也會由活化血小板釋出。雖然 Aβ 刺激血小板的生理角色未明,但無庸置疑的是血小板的異常活化在腦血管、心臟血管疾病 (粥狀動脈硬化、血栓及澱粉樣腦血管病)的發展確實扮演極重要的角色。此研究有興趣由 Aβ 的角度切入抗血小板藥物研究,希望能藉由先前實驗室建立之 Aβ 誘導血小板凝集模式及研究結果所揭示的活化訊息傳導,來研究目前尚未有研究探討具專一性抑制 Aβ 所誘導的血小板凝集作用的天然物。本研究利用人類的血小板作為材料,篩選具抑制 Aβ 所引起血小板凝集活性的天然物,結果發現 455 及 514 兩種天然物具有抑制活性,其 IC50 分別為 10.9 ± 5.5 μM,16.7 ± 8.3 μM。已知血小板中 Aβ 會造成酪胺酸激酶 Src 與 Syk 的活化,造成下游 PI3K 的活化,再進一步的活化 Vav,接著透過活化下游的 PLC,最終導致血小板的活化凝集。機轉實驗結果發現 455 與 514 皆能抑制 Vav 的磷酸化,其 IC5 0分別為 14 ± 4.7和25.6 ± 3.7 μM;而對 PI3K 活性影響的實驗顯示,455 與 514 均能抑制 Akt 的磷酸化,其 IC50 分別為 13.9 ± 0.4和13.8 ± 0.1 μM;實驗發現 455 能抑制 Aβ 所誘導的 Src 的活性,對於Syk則沒有影響,而 514 則是對 Aβ 所引起的 Src 活化亦無抑制作用。因此,本研究首度發現,455 該天然物是經由抑制 Src的活性,來達到其抑制 Aβ 所引起的血小板凝集現象;而 514 則是透過部分抑制 PI3K 的活化,而成功的抑制 Aβ 引起的血小板凝集。
Recent studies indicate that there are many vasculopathy diseaes may be related to platelet. One of the major features of diseases is the β-amyloid (Aβ) peptides, which are deposited and aggregated as the senile plaques in brains of Alzheimer's disease (AD) individuals. The Aβ fibrils are not only critical to the etiology of AD but also play a key role in the pathogenesis of cerebral amyloid angiopathy. It has been known that platelets are an important cellular element in vasculopathy of various causes. Many studies demonstrate that Aβ fibrils can activate platelet aggregation. In addition, cardiovascular and cerebrovascular diseases such as atherosclerosis, thrombosis and cerebral amyloid angiopathy have significant relationship with platelet aggregation. In present studies, the Aβ fibrils-induced platelet aggregation model and its related signaling pathway are used to screen the effects of natural compounds and to explore their action mechanisms. We were found to some natural compounds include of 455 and 514 compounds suppress Aβ fibrils-induced platelet aggregation. 455 and 514 suppressed Aβ fibrils-induced platelet aggregation with the IC50 value of 10.9 ± 5.5μM and 16.7 ± 8.3 μM, respectively. Aβ fibrils-induced platelet activation, it will induce tyrosine kinase Src and Syk activation, which in form will induce PI3K activation and Vav phosphorylation to bring the platelet aggregation. These two compounds suppressed Vav phosphorylation with the IC50 value of 14 ± 4.7 μM and 25.6 ± 3.7 μM and Akt phosphorylation with the IC50 value of 13.9 ± 0.4 μM and 13.8 ± 0.1 μM. The 455 had no effect on Syk activation and the 514 had no effect on Src phosphorylation. Therefore, the present study demonstrated for the first time that 455 may block the Src activation and the 514 may block the PI3K activation to inhibit the downstream signal transduction and platelet aggregation induced by Aβ fibrils.
英文縮寫對照表…………………………………………………1
中文摘要…………………………………………………………4
英文摘要…………………………………………………………6
緒論………………………………………………………………7
乙型澱粉樣蛋白簡介………………………………………7
血小板簡介…………………………………………………10
血小板訊息傳遞路徑………………………………………13
研究動機與目的…………………………………………………18
研究材料與方法…………………………………………………20
實驗結果…………………………………………………………25
討論………………………………………………………………33
參考文獻…………………………………………………………40
圖表目錄…………………………………………………………47
附錄………………………………………………………………59
Akers, D. L., Kerstein, M. D., Rush, D. S., Bellan, J. A., Haynes, D. F., Kadowitz, P. J. and McNamara, D. B., Prostacyclin and thromboxane A2 formation by atherosclerotic carotid artery: comparison with normal aorta, saphenous vein, and platelets, J Vasc Surg, 1988, 8(4):520-526.
Annaert, W. and De Strooper, B., A cell biological perspective on Alzheimer's disease, Annu Rev Cell Dev Biol, 2002, 18:25-51.
Bagrodia, S., Bailey, D., Lenard, Z., Hart, M., Guan, J. L., Premont, R. T., Taylor, S. J., et al., A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins, J Biol Chem, 1999, 274(32):22393-22400.
Ban, J. Y., Cho, S. O., Jeon, S. Y., Bae, K., Song, K. S. and Seong, Y. H., 3,4-dihydroxybenzoic acid from Smilacis chinae rhizome protects amyloid beta protein (25-35)-induced neurotoxicity in cultured rat cortical neurons, Neurosci Lett, 2007, 420(2):184-188.
Barger, S. W., An unconventional hypothesis of oxidation in Alzheimer's disease: intersections with excitotoxicity, Front Biosci, 2004, 9:3286-3295.
Barry, F. A. and Gibbins, J. M., Protein kinase B is regulated in platelets by the collagen receptor glycoprotein VI, J Biol Chem, 2002, 277(15):12874-12878.
Nicholson, A. C., Han, J., Febbraio, M., Silversterin, R. L. and Hajjar, D. P., Role of CD36, the macrophage class B scavenger receptor, in atherosclerosis, Ann N Y Acad Sci, 2001, 947:224-228.
Bellucci, S. and Caen, J. P., [Platelets and aging], C R Seances Soc Biol Fil, 1992, 186(3):193-197.
Boeynaems, J. M., Van Coevorden, A. and Demolle, D., Dipyridamole and vascular prostacyclin production, Biochem Pharmacol, 1986, 35(17):2897-2902.
Bolen, J. B., Rowley, R. B., Spana, C. and Tsygankov, A. Y., The Src family of tyrosine protein kinases in hemopoietic signal transduction, Faseb J, 1992, 6(15):3403-3409.
Born, G. V. and Cross, M. J., The Aggregation of Blood Platelets, J Physiol, 1963, 168:178-195.
Bush, C. E., Goldston, R. J., Scott, S. D., Fredrickson, E. D., McGuire, K., Schivell, J., Taylor, G., et al., Peaked density profiles in circular-limiter H modes on the TFTR tokamak, Phys Rev Lett, 1990, 65(4):424-427.
Bustelo, X. R., Regulatory and signaling properties of the Vav family, Mol Cell Biol, 2000, 20(5):1461-1477.
Casoli, T., Di Stefano, G., Giorgetti, B., Balietti, M., Recchioni, R., Moroni, F., Marcheselli, F., et al., Platelet as a physiological model to investigate apoptotic mechanisms in Alzheimer beta-amyloid peptide production, Mech Ageing Dev, 2008, 129(3):154-162.
Cattabeni, F., Colciaghi, F. and Di Luca, M., Platelets provide human tissue to unravel pathogenic mechanisms of Alzheimer disease, Prog Neuropsychopharmacol Biol Psychiatry, 2004, 28(5):763-770.
Cerwinka, W. H., Cooper, D., Krieglstein, C. F., Ross, C. R., McCord, J. M. and Granger, D. N., Superoxide mediates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules, Am J Physiol Heart Circ Physiol, 2003, 284(2):H535-541.
Chen, M., Inestrosa, N. C., Ross, G. S. and Fernandez, H. L., Platelets are the primary source of amyloid beta-peptide in human blood, Biochem Biophys Res Commun, 1995, 213(1):96-103.
Collot-Teixeira, S., De Lorenzo, F. and McGregor, J. L., Scavenger receptor A and CD36 are implicated in mediating platelet activation induced by oxidized low- density lipoproteins, Arterioscler Thromb Vasc Biol, 2007, 27(12):2491-2492.
Deckert, M., Tartare-Deckert, S., Couture, C., Mustelin, T. and Altman, A., Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product, Immunity, 1996, 5(6):591-604.
El Khoury, J., Hickman, S. E., Thomas, C. A., Cao, L., Silverstein, S. C. and Loike, J. D., Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils, Nature, 1996, 382(6593):716-719.

Elwood, P. C., Hughes, C. and O'Brien, J. R., Platelets, aspirin, and cardiovascular disease, Postgrad Med J, 1998, 74(876):587-591.
Frojmovic, M. M. and Milton, J. G., Human platelet size, shape, and related functions in health and disease, Physiol Rev, 1982, 62(1):185-261.
Fryer, J. D., Simmons, K., Parsadanian, M., Bales, K. R., Paul, S. M., Sullivan, P. M. and Holtzman, D. M., Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model, J Neurosci, 2005, 25(11):2803-2810.
Futterer, K., Wong, J., Grucza, R. A., Chan, A. C. and Waksman, G., Structural basis for Syk tyrosine kinase ubiquity in signal transduction pathways revealed by the crystal structure of its regulatory SH2 domains bound to a dually phosphorylated ITAM peptide, J Mol Biol, 1998, 281(3):523-537.
Gabbeta, J., Yang, X., Kowalska, M. A., Sun, L., Dhanasekaran, N. and Rao, A. K., Platelet signal transduction defect with Galpha subunit dysfunction and diminished Galphaq in a patient with abnormal platelet responses, Proc Natl Acad Sci U S A, 1997, 94(16):8750-8755.
George, J. N., Platelets, Lancet, 2000, 355(9214):1531-1539.
McNicol, A. and Israels, S. J., Platelets and anti-platelet therapy, J Pharmacol Sci, 2003, 93(4):381-396.
Gibbins, J. M., Platelet adhesion signalling and the regulation of thrombus formation, J Cell Sci, 2004, 117(Pt 16):3415-3425.
Gibbins, J. M., Briddon, S., Shutes, A., van Vugt, M. J., van de Winkel, J. G., Saito, T. and Watson, S. P., The p85 subunit of phosphatidylinositol 3-kinase associates with the Fc receptor gamma-chain and linker for activitor of T cells (LAT) in platelets stimulated by collagen and convulxin, J Biol Chem, 1998, 273(51):34437-34443.
Romero, F. and Fischer, S., Structure and function of vav, Cell Signal, 1996, 8(8):545-553.
Gilman, A. G., G proteins: transducers of receptor-generated signals, Annu Rev Biochem, 1987, 56:615-649.
Gurney, D., Lip, G. Y. and Blann, A. D., A reliable plasma marker of platelet activation: does it exist?, Am J Hematol, 2002, 70(2):139-144.
Heo, J., Thapar, R. and Campbell, S. L., Recognition and activation of Rho GTPases by Vav1 and Vav2 guanine nucleotide exchange factors, Biochemistry, 2005, 44(17):6573-6585.
Herczenik, E., Bouma, B., Korporaal, S. J., Strangi, R., Zeng, Q., Gros, P., Van Eck, M., et al., Activation of human platelets by misfolded proteins, Arterioscler Thromb Vasc Biol, 2007, 27(7):1657-1665.
Herzig, M. C., Winkler, D. T., Burgermeister, P., Pfeifer, M., Kohler, E., Schmidt, S. D., Danner, S., et al., Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis, Nat Neurosci, 2004, 7(9):954-960.
Hornstein, I., Alcover, A. and Katzav, S., Vav proteins, masters of the world of cytoskeleton organization, Cell Signal, 2004, 16(1):1-11.
Ichinohe, T., Takayama, H., Ezumi, Y., Arai, M., Yamamoto, N., Takahashi, H. and Okuma, M., Collagen-stimulated activation of Syk but not c-Src is severely compromised in human platelets lacking membrane glycoprotein VI, J Biol Chem, 1997, 272(1):63-68.
Jaken, S. and Parker, P. J., Protein kinase C binding partners, Bioessays, 2000, 22(3):245-254.
Johnston, J. A., Liu, W. W., Coulson, D. T., Todd, S., Murphy, S., Brennan, S., Foy, C. J., et al., Platelet beta-secretase activity is increased in Alzheimer's disease, Neurobiol Aging, 2008, 29(5):661-668.
Judd, B. A. and Koretzky, G. A., The role of the adapter molecule SLP-76 in platelet function, Oncogene, 2001, 20(44):6291-6299.
Kefalas, P., Brown, T. R. and Brickell, P. M., Signalling by the p60c-src family of protein-tyrosine kinases, Int J Biochem Cell Biol, 1995, 27(6):551-563.
Blockmans, D., Deckmyn, H. and Vermylen, J., Platelet activation, Blood Rev, 1995, 9(3):143-156.
Korporaal, S. J., Van Eck, M., Adelmeijer, J., Ijsseldijk, M., Out, R., Lisman, T., Lenting, P. J., et al., Platelet activation by oxidized low density lipoprotein is mediated by CD36 and scavenger receptor-A, Arterioscler Thromb Vasc Biol, 2007, 27(11):2476-2483.
Lam, S. C., Guccione, M. A., Packham, M. A. and Mustard, J. F., Effect of cAMP phosphodiesterase inhibitors on ADP-induced shape change, cAMP and nucleoside diphosphokinase activity of rabbit platelets, Thromb Haemost, 1982, 47(2):90-95.
Laske, C., Leyhe, T., Stransky, E., Eschweiler, G. W., Bueltmann, A., Langer, H., Stellos, K., et al., Association of platelet-derived soluble glycoprotein VI in plasma with Alzheimer's disease, J Psychiatr Res, 2008, 42(9):746-751.
Lee, S. B., Rao, A. K., Lee, K. H., Yang, X., Bae, Y. S. and Rhee, S. G., Decreased expression of phospholipase C-beta 2 isozyme in human platelets with impaired function, Blood, 1996, 88(5):1684-1691.
Leitinger, B. and Hohenester, E., Mammalian collagen receptors, Matrix Biol, 2007, 26(3):146-155.
Li, Q. X., Berndt, M. C., Bush, A. I., Rumble, B., Mackenzie, I., Friedhuber, A., Beyreuther, K., et al., Membrane-associated forms of the beta A4 amyloid protein precursor of Alzheimer's disease in human platelet and brain: surface expression on the activated human platelet, Blood, 1994, 84(1):133-142.
Lokeshwar, V. B. and Bourguignon, L. Y., The involvement of Ca2+ and myosin light chain kinase in collagen-induced platelet activation, Cell Biol Int Rep, 1992, 16(9):883-897.
Miyakawa, Y., Oda, A., Druker, B. J., Ozaki, K., Handa, M., Ohashi, H. and Ikeda, Y., Thrombopoietin and thrombin induce tyrosine phosphorylation of Vav in human blood platelets, Blood, 1997, 89(8):2789-2798.
Moncada, S. and Korbut, R., Dipyridamole and other phosphodiesterase inhibitors act as antithrombotic agents by potentiating endogenous prostacyclin, Lancet, 1978, 1(8077):1286-1289.

Pasquet, J. M., Gross, B., Quek, L., Asazuma, N., Zhang, W., Sommers, C. L., Schweighoffer, E., et al., LAT is required for tyrosine phosphorylation of phospholipase cgamma2 and platelet activation by the collagen receptor GPVI, Mol Cell Biol, 1999, 19(12):8326-8334.
Pearce, A. C., McCarty, O. J., Calaminus, S. D., Vigorito, E., Turner, M. and Watson, S. P., Vav family proteins are required for optimal regulation of PLCgamma2 by integrin alphaIIbbeta3, Biochem J, 2007, 401(3):753-761.
Pearce, A. C., Senis, Y. A., Billadeau, D. D., Turner, M., Watson, S. P. and Vigorito, E., Vav1 and vav3 have critical but redundant roles in mediating platelet activation by collagen, J Biol Chem, 2004, 279(52):53955-53962.
Quinton, T. M., Kim, S., Dangelmaier, C., Dorsam, R. T., Jin, J., Daniel, J. L. and Kunapuli, S. P., Protein kinase C- and calcium-regulated pathways independently synergize with Gi pathways in agonist-induced fibrinogen receptor activation, Biochem J, 2002, 368(Pt 2):535-543.
Radomski, M. W., Palmer, R. M. and Moncada, S., The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium, Biochem Biophys Res Commun, 1987, 148(3):1482-1489.
Rink, T. J. and Sage, S. O., Calcium signaling in human platelets, Annu Rev Physiol, 1990, 52:431-449.
Rosado, J. A. and Sage, S. O., Phosphoinositides are required for store-mediated calcium entry in human platelets, J Biol Chem, 2000, 275(13):9110-9113.
Ruggeri, Z. M. and Mendolicchio, G. L., Adhesion mechanisms in platelet function, Circ Res, 2007, 100(12):1673-1685.
Sage, S. O., The Wellcome Prize Lecture. Calcium entry mechanisms in human platelets, Exp Physiol, 1997, 82(5):807-823.
Sarkar, S., Tyrosine phosphorylation and translocation of LAT in platelets, FEBS Lett, 1998, 441(3):357-360.
Schafer, A. I., Antiplatelet therapy, Am J Med, 1996, 101(2):199-209.

Smith, C. C., Stimulated release of the beta-amyloid protein of Alzheimer's disease by normal human platelets, Neurosci Lett, 1997, 235(3):157-159.
Stanyer, L., Betteridge, D. J. and Smith, C. C., Exaggerated polymerisation of beta-amyloid 40 stimulated by plasma lipoproteins results in fibrillar Abeta preparations that are ineffective in promoting ADP-induced platelet aggregation, Biochim Biophys Acta, 2004, 1674(3):305-311.
Tang, K., Hynan, L. S., Baskin, F. and Rosenberg, R. N., Platelet amyloid precursor protein processing: a bio-marker for Alzheimer's disease, J Neurol Sci, 2006, 240(1-2):53-58.
Tsai WJ., Hsieh HT., Chen CC., Kuo YC., Chen CF., Characterization of the antiplatelet effects of (2S)-5-methoxy-6-methylflavan-7-ol from Draconis Resina, Eur J Pharmacol, 1998, 346(1):103-10.
Weyrich, A., Cipollone, F., Mezzetti, A. and Zimmerman, G., Platelets in atherothrombosis: new and evolving roles, Curr Pharm Des, 2007, 13(16):1685-1691.
Wilkinson, B., Koenigsknecht-Talboo, J., Grommes, C., Lee, C. Y. and Landreth, G., Fibrillar beta-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia, J Biol Chem, 2006, 281(30):20842-20850.
Wu, K. K., Barnes, R. W. and Hoak, J. C., Platelet hyperaggregability in idiopathic recurrent deep vein thrombosis, Circulation, 1976, 53(4):687-691.
Yacoub, D., Theoret, J. F., Villeneuve, L., Abou-Saleh, H., Mourad, W., Allen, B. G. and Merhi, Y., Essential role of protein kinase C delta in platelet signaling, alpha IIb beta 3 activation, and thromboxane A2 release, J Biol Chem, 2006, 281(40):30024-30035.
Yule, D. I., Subtype-specific regulation of inositol 1,4,5-trisphosphate receptors: controlling calcium signals in time and space, J Gen Physiol, 2001, 117(5):431-434.
Zheng, Y. and Quilliam, L. A., Activation of the Ras superfamily of small GTPases. Workshop on exchange factors, EMBO Rep, 2003, 4(5):463-468.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊