跳到主要內容

臺灣博碩士論文加值系統

(18.207.132.116) 您好!臺灣時間:2021/07/29 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許宏維
研究生(外文):Hung-Wei Hsu
論文名稱:不同彈性帶預張力之動態脊椎內固定器DYNESYS對腰椎之生物力學效應-有限元素分析
論文名稱(外文):Biomechanical Effect of the Lumbar with Dynamic Spinal Internal Fixator DYNESYS on Different Cord Pretensions : A Finite Element Analysis
指導教授:陳振昇陳振昇引用關係
指導教授(外文):Chen-Sheng Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:104
中文關鍵詞:DYNESYS動態脊椎內固定器有限元素法生物力學
外文關鍵詞:DYNESYSdynamic spinal internal fixatorfinite element methodbiomechanics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:511
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
脊椎內固定器合併融合術,主要用於治療腰椎不穩定問題,但臨床文獻指出使用融合術後,加速鄰近椎節之退化;因此,動態脊椎內固定器DYNESYS被開發出來解決此問題,以提供椎節間穩定度與避免鄰近椎節發生加速退化情形。但臨床報告指出使用DYNESYS後,仍發現術後鄰近椎節退化與椎足螺釘斷裂之併發症,意即DYNESYS的勁度仍舊太高,因此本研究目的希望降低DYNESYS之彈性帶預張力,進而降低DYNESYS之固定勁度,以了解是否可保留脊椎穩定度及減少鄰近端椎間盤應力上升。
本研究以有限元素軟體ANSYS建立一組完整腰椎模型,定義為INT模型;並於L3-L4腰椎模型植入不同彈性帶張力之DYNESYS,分別為彈性帶預張力300牛頓、200牛頓、100牛頓,並定義為PT300、PT200與PT100三組模型。施予預負荷150N於L1上方,並採用位移控制,使整體椎節活動度於前彎、後彎、扭轉與側彎動作下,分別達到20°、15°、8°與20°。探討項目分別為比較四種動作下之椎節活動度、鄰近椎間盤應力、小面關節接觸力與椎足螺釘應力及其疲勞壽命分析。
研究結果指出植入DYNESYS之模型,於四種動作下皆能提供手術端良好的穩定度,但PT100有最接近INT之表現,其減少13-78%的椎節活動度與減少9-84%的小面關節接觸力;就上下兩鄰近端之椎節活動度而言,除了後彎動作下,PT100亦有最接近INT之表現,與PT300差異最大為5%;就鄰近椎間盤環帶纖維應力而言,除了後彎動作下,PT100同樣有最接近INT之表現,與PT300差異最大為9%;就椎足螺釘結果而言,除了後彎動作下,PT100模型之螺釘應力皆為最小。此外,疲勞分析指出在不同彈性帶預張力下,植入DYNESYS模型之椎足螺釘,均有相同壽命結果。
本研究發現使用DYNESYS並不能使椎節恢復至正常椎節活動度,但PT100模型能提供較近似INT模型之椎節活動度、鄰近椎間盤環帶纖維應力與小面關節接觸力。因此,施予彈性帶預張力100牛頓可做為植入DYNESYS手術之參考。
Fusion with spinal internal fixator was used to treat instability of the lumbar spine. Several clinical studies have indicated that the fusion may accelerate degeneration at adjacent levels. The DYNESYS, a dynamic spinal internal fixator, is therefore designed to maintain intersegmental stability and prevent adjacent segment from degeneration. However, according to previous studies, adjacent segment degeneration and screw breakage still occurred after surgery due to the high stiffness of DYNESYS. Therefore, the purpose of this study was to investigate whether the stability of the lumbar spine could remain and the stress of the adjacent disc could release through decreasing the cord pretension of DYNESYS.
Finite element (FE) software, ANSYS, was used to build an intact lumbar spine (INT) model, implanting different cord pretensions of DYNESYS, defined as 300N (PT300) , 200N (PT200) , and 100N (PT100) , in L3-L4 motion segment of the lumbar spine. Preload 150N on L1 and pure moments incrementally were applied in order to make the flexion, extension, torsion and lateral bending of ROM reached 20, 15, 8 and 20 degrees in each model. The following analysis was comparing the Lumbar ROMs, disc stresses, facet joint contact forces, screw stresses and screw fatigue life in four FE models.
Comparing with INT, the DYNESYS models provided sufficient stability at surgical level with four physiological motions; in addition, PT100 had the performance close to INT and decreased lumbar ROMs to 13-78% and facet joint contact forces to 9-84% at the surgical level. At the both adjacent levels, except for extension, lumbar range of motions (ROMs) and disc stresses of PT100 had the performance close to INT. The maximum difference, comparing with PT300, reached 5% and 9%, respectively. Besides, PT100 had minimal screw stress under flexion, torsion, and lateral bending among three DYNESYS models. The results of screw fatigue life were the same in each DYNESYS model.
Our study found DYNESYS models could not restore normal physiological motions in the lumbar spine. But PT100 was able to provide lumbar ROMs, adjacent disc stresses and facet joint contact forces that approached the performance of INT. This study suggests that applying pretension of 100N to cord in implanting DYNESYS is a better consideration in making clinical decision.
論文電子檔著作權授權書 I
論文審定同意書 II
致謝 III
中文摘要 IV
Abstract VI
目錄 VIII
圖目錄 XI
表目錄 XIII
第一章 前言 1
1-1 目前背景與現況 1
1-2 脊椎之解剖學介紹 1
1-3 脊椎病變與脊椎融合術之問題介紹 6
1-4 動態脊椎內固定器DYNESYS之介紹 10
1-4-1 DYNESYS之臨床文獻回顧 13
1-4-2 DYNESYS之生物力學文獻回顧 17
1-4-3 DYNESYS問題之介紹 26
1-5 研究動機及目的 30
第二章 材料與方法 32
2-1 完整腰椎有限元素模型 35
2-2 完整腰椎模型植入DYNESYS之模型 41
2-3 邊界條件與負荷條件 46
2-4 腰椎元件生物力學分析 47
2-5 DYNESYS椎足螺釘之疲勞分析 51
第三章 結果 54
3-1 椎節活動度 54
3-1-1 手術端L3-L4椎節活動度變化百分比 54
3-1-2 上鄰近端L2-L3椎節活動度變化百分比 55
3-1-3 下鄰近端L4-L5椎節活動度變化百分比 56
3-2 椎間盤應力 59
3-2-1 手術端L3-L4椎間盤環帶最大應力變化百分比 59
3-2-2 上鄰近端L2-L3椎間盤環帶最大應力變化百分比 60
3-2-3 下鄰近端L4-L5椎間盤環帶最大應力變化百分比 61
3-3 小面關節接觸力 68
3-3-1 後彎動作之小面關節受力變化百分比 68
3-3-2 扭轉動作之小面關節受力變化百分比 68
3-3-3 側彎動作之小面關節受力變化百分比 69
3-4 椎足螺釘應力 72
3-5 套筒應力 73
3-6 DYNESYS之椎足螺釘疲勞分析結果 73
第四章 討論 80
4-1 研究結果之探討 80
4-1-1 椎節活動度之討論 80
4-1-2 鄰近端椎間盤應力之討論 82
4-1-3 手術端L3-L4小面關節接觸力之討論 83
4-1-4 椎足螺釘應力與疲勞分析之討論 84
4-2 研究假設與限制 87
4-2-1 腰椎有限元素模型之基本假設與限制 87
4-2-2 DYNESYS有限元素模型假設與限制 88
4-2-3 有限元素模型位移控制條件問題 89
4-3 未來研究方向 90
第五章 結論 91
參考文獻 92
附錄一:有限元素種類特性 97
附錄二:Palmgren-Miner累積疲勞準則 100
附錄三:四組模型資料結果 101
1. ANSYS 11.0 user's manual. Canonsburg, Pennsylvania: ANSYS Inc., 2007.
2. Diseases of the musculoskeletal system and connective tissue. In Health ed. Taipei, 2007.
3. MatWeb MATERIAL PROPERTY DATA [database online]. Updated
4. Agur AMR, Lee MJ. Grant’s Atlas of Anatomy. 10th ed. Lippincott: Williams&Wilkins, 1999.
5. Bae HW, Pradhan B.B., Kanim L.E.A. Motion preserving dynamic posterior stabilization of the lumbar spine:early results from the US clinic trial with the Dynesys system. 52th ORS conference. Chicago:USA, 2006.
6. Bothmann M, Kast E, Boldt GJ, et al. Dynesys fixation for lumbar spine degeneration. Neurosurgical Review 2008;31:189-96.
7. Chen CS, Chen WJ, Cheng CK, et al. Failure analysis of broken pedicle screws on spinal instrumentation. Medical Engineering and Physics 2005;27:487-96.
8. Chen CS, Cheng CK, Liu CL, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical Engineering and Physics 2001;23:485-93.
9. Chen CS, Feng CK, Cheng CK, et al. Biomechanical Analysis of the Disc Adjacent to Posterolateral Fusion with Laminectomy in Lumbar Spine. Journal of Spinal Disorders & Techniques 2005;18:58.
10. Chen H. Mechanical Design 2nd ed: Gau-Lih Book Co.,Ltd., 2000.
11. Chen SH, Zhong ZC, Chen CS, et al. Biomechanical comparison between lumbar disc arthroplasty and fusion. Medical Engineering & Physics 2009;31:244-53.
12. Delamarter RB, Fribourg DM. ProDisc Artificial Total Lumbar Disc Replacement: Introduction and Early Results From the United States Clinical Trial. Spine 2003;28:S167.
13. Dennis S, Watkins R, Landaker S, et al. Comparison of disc space heights after anterior lumbar interbody fusion. Spine 1989;14:876.
14. Dubois G, Schwarzenbach O, Specchia N, et al. Dynamic Reconstruction of the Spine. In Kim DH, Cammisa Jr. FP, Fessler RG eds. New York: Thieme Medical Publishers,Inc., 2006.
15. Eberlein R, Holzapfel G, Schulze-Bauer C. Assessment of a spinal implant by means of advanced FE modeling of intact human intervertebral discs, 2002.
16. GmbH Z. Dynesys® L.I.S. Surgical technique booked, 2005.
17. Goel V, Monroe B, Gilbertson L, et al. Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine 1995;20:689.
18. Grob D, Benini A, Junge A, et al. Clinical Experience With the Dynesys Semirigid Fixation System for the Lumbar Spine: Surgical and Patient-Oriented Outcome in 50 Cases After an Average of 2 Years. Spine 2005;30:324.
19. Hibbs RA. An operation for progressive spinal deformities. New York Med J. 1911;93:1013-6.
20. Hu ME, Chen YH, Hsieh HY, et al. Human Anatomy. 1st ed. Taipei: Yi Hsien Publishing Co., Ltd., 1999.
21. Kanayama M, Cunningham B, Sefter J, et al. Does Spinal Instrumentation Influence the Healing Process of Posterolateral Spinal Fusion?: An In Vivo Animal Model. Spine 1999;24:1058.
22. Kayabasi O, Erzincanli F. Finite element modelling and analysis of a new cemented hip prosthesis. Advances in Engineering Software 2006;37:477-83.
23. Kayabasi O, Yüzbasioglu E, Erzincanli F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Advances in Engineering Software 2006;37:649-58.
24. Kim DH, Cammisa Jr. FP, Fessler RG. Dynamic Reconstruction of the Spineed. New York: Thieme Medical Publishers,Inc., 2006.
25. Kuslich SD, Danielson G, Dowdle JD, et al. Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine 2000;25:2656.
26. Lee CK, Langrana NA. Lumbosacral spinal fusion a biomechanical study. Spine 1984;9:574.
27. Lee K, Teo E, Fuss F, et al. Finite-element analysis for lumbar interbody fusion under axial loading. IEEE Transactions on Biomedical Engineering 2004;51:393-400.
28. Lu Y, Hutton W, Gharpuray V. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine 1996;21:2570.
29. Magee DJ. Orthopedic Physical Assessment 4th ed. St. Louis: Saunders Elsevier, 2006.
30. McAfee PC. Current Concepts Review-Interbody Fusion Cages in Reconstructive Operations on the Spine*: JBJS, 1999.
31. Niosi C, Wilson D, Zhu Q, et al. The Effect of Dynamic Posterior Stabilization on Facet Joint Contact Forces: An In Vitro Investigation. Spine 2008;33:19.
32. Niosi C, Zhu Q, Wilson D, et al. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. European Spine Journal 2006;15:913-22.
33. Panjabi MM, Oxland TR, Yamamoto I, et al. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves: JBJS, 1994:413-24.
34. Plev D, Sutcliffe JC. Outcome and complications using a dynamic neutralization and stabilization pedicle screw system (DYNESYS): Is this a soft fusion?? The spine journal : official journal of the North American Spine Society 2005;5:S141-S2.
35. Putzier M, Schneider SV, Funk JF, et al. The Surgical Treatment of the Lumbar Disc Prolapse: Nucleotomy With Additional Transpedicular Dynamic Stabilization Versus Nucleotomy Alone. Spine 2005;30:E109-E14 10.1097/01.brs.0000154630.79887.ef.
36. Rahm MD, Hall BB. Adjacent-segment degeneration after lumbar fusion with instrumentation: a retrospective study. Journal of spinal disorders 1996;9:392.
37. Rohlmann A, Bergmann G, Graichen F. A spinal fixation device for in vivo load measurement. Journal of Biomechanics 1994;27:961-7.
38. Rohlmann A, Burra N, Zander T, et al. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. European Spine Journal 2007;16:1223-31.
39. Rohlmann A, Neller S, Claes L, et al. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 2001;26:E557.
40. Rohlmann A, Zander T, Bergmann G. Effect of Total Disc Replacement with ProDisc on Intersegmental Rotation of the Lumbar Spine. Spine 2005;30:738.
41. Rohlmann A, Zander T, Bergmann G. Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement. Clinical Biomechanics 2006;21:221-7.
42. Schaeren S, Broger I, Jeanneret B. Minimum Four-Year Follow-up of Spinal Stenosis With Degenerative Spondylolisthesis Treated With Decompression and Dynamic Stabilization. Spine 2008;33:E636-E42 10.1097/BRS.0b013e31817d2435.
43. Schmidt H, Heuer F, Simon U, et al. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clinical Biomechanics 2006;21:337-44.
44. Schmoelz W, Huber J, Nydegger T, et al. Dynamic Stabilization of the Lumbar Spine and Its Effects on Adjacent Segments: An In Vitro Experiment. Journal of Spinal Disorders & Techniques 2003;16:418.
45. Schmoelz W, Huber J, Nydegger T, et al. Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure. European Spine Journal 2006;15:1276-85.
46. Schnake K, Schaeren S, Jeanneret B. Dynamic Stabilization in Addition to Decompression for Lumbar Spinal Stenosis with Degenerative Spondylolisthesis. Spine 2006;31:442.
47. Shigley JE, Mischke CR. Mechanical Engineering Design 5th ed. New York McGraw-Hill, 1989.
48. Shin DS, Lee K, Kim D. Biomechanical study of lumbar spine with dynamic stabilization device using finite element method. CAD Computer Aided Design 2007;39:559-67.
49. Shirazi-Adl A, AHMED A, SHRIVASTAVA S. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 1986;11:914.
50. Stauffer RN, Coventry MB. Anterior interbody lumbar spine fusion. Analysis of Mayo Clinic series: JBJS, 1972:756-68.
51. Stoll T, Dubois G, Schwarzenbach O. The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. European Spine Journal 2002;11:170-8.
52. Vaga S, Brayda-Bruno M, Perona F, et al. Molecular MR imaging for the evaluation of the effect of dynamic stabilization on lumbar intervertebral discs. European Spine Journal 2009.
53. Van Ooij A. Analysis of 21 patients with clinically failed Charite disc prosthesis. Eur Spine J 2002;1:47.
54. Vishnubhotla S, Goel VK, Shaw MN, et al. Kinematic analysis of dynamic stabilization systems for the lumbar spine. 52th ORS conference Chicago:USA, 2006:No. 1278.
55. Würgler-Hauri CC, Kalbarczyk A, Wiesli M, et al. Dynamic Neutralization of the Lumbar Spine After Microsurgical Decompression in Acquired Lumbar Spinal Stenosis and Segmental Instability. Spine 2008;33:E66-E72 10.1097/BRS.0b013e31816245c0.
56. Weinhoffer SL, Guyer RD, Herbert M, et al. Intradiscal pressure measurements above an instrumented fusion: a cadaveric study. Spine 1995;20:526.
57. Weinstein M, Denhoy R, Krishnan A. Disruptive medical technologies. The next big thing in spine, JP Morgan, North American Equity Research, New York 2003.
58. Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 1989;14:1256.
59. Zander T, Rohlmann A, Burra N, et al. Effect of a posterior dynamic implant adjacent to a rigid spinal fixator. Clinical Biomechanics 2006;21:767-74.
60. Zhang QH, Zhou YL, Petit D, et al. Evaluation of load transfer characteristics of a dynamic stabilization device on disc loading under compression. Medical Engineering & Physics 2009;31:533-8.
61. Zhong ZC. Biomechanical Evaluation and Design of the Interbody Fusion Cage in Lumbar Spine. Institute of Rehabilitation Science and Technology. Taipei: National Yang-Ming University, 2004.
62. Zhong ZC, Chen SH, Chen WJ, et al. Comparison of the load and displacement controlled finite element analyses on fusion and non-fusion spinal implants. Journal of Biomechanics 2007;40:353.
63. Zhong ZC, Chen SH, Hung CH. Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proc Inst Mech Eng 2009;223:143-57.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊