跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林晉熯
研究生(外文):Jin-Han Lin
論文名稱:不同足跟墊之足部生物力學分析
論文名稱(外文):Biomechanical Analysis of the Foot on Different Heel Cushions
指導教授:陳振昇陳振昇引用關係
指導教授(外文):Chen-Sheng Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:137
中文關鍵詞:足跟墊有限元素分析生物力學
外文關鍵詞:heel cushionsfinite element analysisbiomechanical analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:128
  • 收藏至我的研究室書目清單書目收藏:0
楔型構造的足跟墊的主要功能在於步行時分散足跟的壓力,同時減少足跟的能量衝擊以達到減緩足跟痛的效果。然而,足跟墊的此種物理特性取決於它的材質選用以及厚度設計,在市面上不同品牌的足跟墊有不一樣的設計,但目前尚未有研究指出不同品牌的足跟墊對足部減壓效果如何以及對足部組織受力的影響,因此本研究的主要目的在於比較使用市面上常見的矽膠(Silicon)與熱塑性(TPE)足跟墊在步行時足跟有最大壓力瞬間下,足底各區域的力學影響。同時,使用有限元素分析探討足部組織的力學效應。
本研究共有16位受測者參與此次人體試驗,受測者在穿上Silicon足跟墊、TPE足跟墊以及不穿足跟墊的情況之下,以舒適的速度步行在15公尺長廊。同時使用Pedar足壓系統在每次測試時皆截取其中5步資料作足壓分析。以組間相關係數和樣本配對T檢定來分析每次測試間的重複性和三組之間的足部力學差異。足部亦被劃分為10個區域,分別比較垂直作用力、峰壓值、平均壓力和接觸面積。而有限元素足部模型乃取其中一位受測者的足部建模完成,經過足壓實驗驗證通過後,再進行足後跟應變及應變能、足底筋膜受力及跟骨應力之生物力學分析。
研究結果顯示穿戴足跟墊後使得中足被墊高,地面反作用力前移,前足受力增加,而導致前足的峰壓、平均壓力、垂直作用力與接觸面積皆增加了,但是中足區域的卻減少了。在足跟區域的比較上,穿Silicon足跟墊相對於不穿足跟墊之下可以顯著性的減少足跟峰壓值約10%;但使用TPE足跟墊卻沒有差異。在有限元素分析方面,相較於裸足,使用Silicon與TPE足跟墊後使得脂肪墊減少約23%以及17%的最大應變;在應變能方面,使用Silicon足跟墊更減少了45%,比TPE足跟墊的37%還要多。可是兩組相對於裸足都使得足底筋膜張力、應變以及與跟骨相接處的von-Mises應力值上升,又以TPE足跟墊的影響比Silicon足跟墊來的大。
本研究結論指出在步行之下,足跟產生最大壓力瞬間,使用足跟墊會使足部受力中心前移,導致前足的地面反作用力和壓力增加。同時,足跟墊有助於舒緩足跟峰壓值、後足軟組織的應變和應變能,但卻導致足底筋膜應變和與跟骨相接處的應力增加。因此,足跟墊有助於減緩脂肪墊損傷導致的足跟痛,對於足底筋膜炎導致的足跟痛較不適合,並且以Silicon足跟墊的效果比TPE好。
The heel cushion is used to redistribute foot pressure as well as reduce peak heel pressure in order to relieve heel pain. The feature of the wedged-shaped heel cushion to relieve pressure is determined by materials and thickness. Different brands of heel cushions have different designs; however, few studies reported the effect of reducing foot pressure and loading effect in the foot. The purpose of this study was to compare the difference between the Silicon and TPE heel cushion in terms of foot biomechanical factors under the maximum heel pressure during walking. Additionally, this study underwent the finite element (FE) analysis to investigate the loading effect inside the foot.
Sixteen healthy subjects volunteered for this study. The three conditions of shoe-only, wearing TPE and silicon heel cushion were tested in walking with favored velocity for three times. The Pedar in-shoe system was implemented to collect foot pressure data of five steps each trail. ICC and paired T test were used for the test-retest repeatability and differences. The peak pressure, average pressure, ground reaction force, and contact area were measured at ten regions on the foot. The foot FE model was reconstructed from one of the subjects, and the FE model validated by experimental trials. After validated the FE model, the biomechanical analysis was conducted in terms of strain energy and strain of heel, loads of plantar fascia and stress of calcaneus.
The results revealed that wearing heel cushions resulted in ground reaction force moving forward, and consequently increased peak and average pressure, ground reaction force, and contact area on forefoot. Comparing to the shoe-only without heel cushion, wearing silicon heel cushion reduced peak pressure about 10% on heel, but wearing TPE heel cushion had no significant difference in peak pressure on heel. Additionally, the TPE heel cushion caused higher forefoot pressure and force than silicon heel cushion. On the other side, FE analysis indicated that the foot with silicon heel cushion and with TPE heel cushions respectively decreased fat-pad strain by 23% and 17% when compared with barefoot situation. The fat-pad strain energy of wearing silicon and TPE heel cushion respectively decreased 45% and 37%. However, the tension and strain of plantar fascia, and the von-Mises stress of the site attached to calcaneus all increased when wearing either silicon or TPE heel cushions. Meanwhile, wearing TPE heel cushion affected more than wearing silicon heel cushion.
The conclusion indicated that wearing heel cushions could result in COP moving forward, increasing the forefoot pressure and reaction force. Furthermore, it also helped relieving heel peak pressure, fat pad strain and strain energy, but increased plantar fascia strain and the stress of the site attached to calcaneus. Consequently, heel cushions were suitable for the heel pain of the fat pad injury, but not for plantar fasciitis.
目錄
中文摘要 I
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 XIII

第一章 緒論 1
1-1. 前言 1
1-2. 足部解剖構造 3
1-2-1. 骨骼構造 3
1-2-2. 肌肉構造 6
1-2-3. 足後跟區域 8
1-3. 足跟痛介紹 10
1-3-1. 病因與流行病學 10
1-3-2. 足部生物力學 12
1-3-3. 足跟痛治療 16
1-4. 有限元素法應用 21
1-5. 研究動機與目的 28
第二章 材料與方法 29
2-1. 個案收集與測試用鞋 30
2-2. 儀器設備 33
2-3. 人體實驗過程 34
2-4人體實驗資料分析與統計 36
2-4-1. 足部區域定義 36
2-4-2. 分析與統計方法 38
2-5. 有限元素分析 40
2-5-1. 足部有限元素模型建立 40
2-5-2. 足跟墊有限元素模型建立 47
2-5-3. 負荷與邊界條件 58
2-6. 有限元素模型驗證 63
2-7. 有限元素足部模型資料分析 65
第三章 結果: 72
3-1. 人體實驗分析結果 72
3-1-1. 足底垂直作用力比較: 73
3-1-2. 足底接觸面積: 73
3-1-3. 足底峰壓: 74
3-1-4. 足底平均壓力 75
3-2. 模型驗證 81
3-3. 有限元素分析 90
3-3-1. 足跟下軟組織應變與應變能 90
3-3-2. 足底筋膜張力、應變以及與跟骨相接處之應力值 90
3-3-3. 骨骼應力分佈 91
第四章 討論 99
4-1. 人體實驗之PEDAR足壓系統量測的統計比較 99
4-2. 有限元素模型的驗證 108
4-3. 有限元素模型分析比較 113
4-4. 研究假設與限制 117
4-5. 未來研究方向 119
第五章 結論 120
參考文獻: 121



圖目錄
圖1-1、足部骨骼解剖圖 5
圖1-2、足部肌肉解剖示意圖 7
圖1-3、足底筋膜與脂肪墊解剖示意圖 9
圖1-4、足跟疼痛常見的位置 11
圖1-4、步態週期 14
圖1-5、脂肪墊的負載-變形曲線 14
圖1-6、退化的足跟脂肪墊受壓迫後塌陷 15
圖1-7、伸展運動示意圖 19
圖1-8、肌內效貼紮 19
圖1-9、足跟墊種類 20
圖1-10、五種不同治療的療效 20
圖1-11、ERDIMIR等人的研究示意圖 24
圖1-12、GEFEN等人於2000年模擬步態站立期各分期之模型 25
圖1-13、GEFEN等人於2003年依蹠骨方向之矢狀面模型 26
圖1-14、HSU等人研究使用之有限元素模型 27
圖1-15、GOSKE等人使用之有限元素模型 27
圖2-1、測試用鞋 32
圖2-2、足跟墊 32
圖2-3、鞋墊式足壓量測系統 33
圖2-4、個案於貼有直線膠帶的長廊行走 35
圖2-5、足底分區與編號 37
圖2-6、步態周期的第一個峰壓值發生於步態承重期時的示意圖 39
圖2-7、有限元素模型 42
圖2-8、SOLID45實體元素 43
圖2-9、LINK10 線元素 43
圖2-10、TPE足跟墊與其有限元素模型尺寸與外型 52
圖2-11、SILICON足跟墊與其有限元素模型尺寸與外型 53
圖2-12、MD300S密度儀 54
圖2-13、壓縮測試 54
圖2-14、以TPE材料為例的材料壓縮測試之應力應變圖 55
圖2-15、啞鈴形試片規格示意圖 56
圖2-16、拉伸測試 57
圖2-17、有限元素模型之足壓中心位置 61
圖2-18、有限元素模型的負荷與邊界條件示意圖 62
圖2-19、足底壓力分區示意圖(底視圖) 64
圖2-20、後足下軟組織定義 67
圖2-21、後足下軟組織矢狀切面示意圖 68
圖2-22、跟骨下表面定義 69
圖2-23、足底筋膜定義 70
圖2-24、蹠骨區域定義 71
圖3-1 後足與中足之垂直作用力 77
圖3-2 前足各區域之垂直作用力 77
圖3-3 後足與中足之接觸面積 78
圖3-4 前足各區域之接觸面積 78
圖3-5 後足與中足之足底峰壓值 79
圖3-6 前足各區域之足底峰壓值 79
圖3-7 後足與中足之足底平均壓力值 80
圖3-8 前足各區域之足底平均壓力值 80
圖3-9、接觸面積比較圖 83
圖3-10、BAREFOOT之足壓分佈圖 84
圖3-11、TPE足跟墊之足壓分佈圖 85
圖3-12、SILICON足跟墊之足壓分佈圖 86
圖3-13、FEM和PEDAR於BAREFOOT的後足峰壓和均壓的比較 87
圖3-13、FEM和PEDAR於TPE足跟墊之足底峰壓比較 88
圖3-14、FEM和PEDAR於TPE足跟墊之足底均壓比較 88
圖3-15、FEM和PEDAR於SILICON足跟墊之足底峰壓比較 89
圖3-16、FEM和PEDAR於SILICON足跟墊之足底均壓比較 89
圖3-17、足跟下軟組織的最大應變比較 93
圖3-18、足跟下軟組織的應變能比較 93
圖3-19、第一矢狀面之足跟軟組織應變趨勢 94
圖3-20、第二矢狀面之足跟軟組織應變趨勢 94
圖3-21、第三矢狀面之足跟軟組織應變趨勢 95
圖3-22、足底筋膜張力比較 95
圖3-23、足底筋膜應變比較 96
圖3-25、跟骨應力分佈圖(底視圖) 97
圖3-26、跟骨下表面之VON-MISES平均應力值比較 98
圖4-1、前足、中足及後足的垂直作用力分配簡圖 102
圖4-2、足底區域垂直作用力之顯著性差異比較示意圖 103
圖4-3、足底區域接觸面積之顯著性差異比較示意圖 104
圖4-4、足底區域峰壓值之顯著性差異比較示意圖 105
圖4-6、足底區域均壓值之顯著性差異比較示意圖 107
圖4-6、足底接觸面積誤差比較圖 111
圖4-7、後足區域中FEM與PEDAR之平均壓力誤差比較 112







表目錄
表2-1、個案資料 31
表2-2、足部有限元素模型使用元素型態與數目 44
表2-3、足部組織材料特性 45
表2-4、WRIGHT等人足底筋膜應力應變資料 46
表2-5、足跟墊之材料參數 50
表2-6、接觸元素設定 51
表3-1、不穿足跟墊、矽膠足跟墊與熱塑性足跟墊三組比較表 76
表3-2、各部位骨頭之應力峰值 92
參考文獻:
1. Alvarez-Nemegyei J, Canoso JJ. Heel pain: diagnosis and treatment, step by step. Cleve Clin J Med. May 2006;73(5):465-471.
2. Bennett MB, Ker RF. The mechanical properties of the human subcalcaneal fat pad in compression. J Anat. Aug 1990;171:131-138.
3. Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand. 1972;43(5):301-317.
4. Chen WP, Tang FT, Ju CW. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis. Clin Biomech (Bristol, Avon). Aug 2001;16(7):614-620.
5. Cheng HY, Lin CL, Wang HW, Chou SW. Finite element analysis of plantar fascia under stretch-the relative contribution of windlass mechanism and Achilles tendon force. J Biomech. 2008;41(9):1937-1944.
6. Cheung JT, Zhang M, An KN. Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. Clin Biomech (Bristol, Avon). Oct 2004;19(8):839-846.
7. Cheung JTM, Zhang M, An KN. Effects of plantar fascia stiffness on the biomechanical responses of the ankle–foot complex. Clinical Biomechanics. 2004;19(8):839-846.
8. Wang CL, Cheng CK, Tsuangl YH, Hang YS, Liu TK. Cushioning effect of heel cups. Clin. Biomech. 1994;9:297-302.
9. De Wit B, De Clercq D, Aerts P. Biomechanical analysis of the stance phase during barefoot and shod running. J Biomech. Mar 2000;33(3):269-278.
10. DiGiovanni BF, Nawoczenski DA, Lintal ME, Moore EA, Murray JC, Wilding GE, Baumhauer JF. Tissue-specific plantar fascia-stretching exercise enhances outcomes in patients with chronic heel pain. A prospective, randomized study. J Bone Joint Surg Am. Jul 2003;85-A(7):1270-1277.
11. Riddle DL. Volume of ambulatory care visits and patterns of care for patients diagnosed with plantar fasciitis: a national study of medical doctor. Foot Ankle Int. 2004;25:303-310.
12. Erdemir A, Hamel AJ, Fauth AR, Piazza SJ, Sharkey NA. Dynamic loading of the plantar aponeurosis in walking. J Bone Joint Surg Am. Mar 2004;86-A(3):546-552.
13. Bandak FA, Tannous RE, Toridis T. On the development of an osseo-ligamentous finite element model of the human ankle joint. International Journal of Solids and Structures. 1999(38):1681-1697.
14. Fendley AE, Marpet MI. Required coefficient of friction versus walking speed: potential influences of footwear and walkway surfaces. Am. Soc. Test. Mater. 1996;24(6):359-367.
15. Gefen A. Stress analysis of the standing foot following surgical plantar fascia release. Journal of Biomechanics. May 2002;35(5):629-637.
16. Gefen A. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med Eng Phys. Jul 2003;25(6):491-499.
17. Gefen A, Megido-Ravid M, Itzchak Y, Arcan M. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications. J Biomech Eng. Dec 2000;122(6):630-639.
18. Goske S, Erdemir A, Petre M, Budhabhatti S, Cavanagh PR. Reduction of plantar heel pressures: Insole design using finite element analysis. J Biomech. 2006;39(13):2363-2370.
19. Gratz CM. Tensile strength and elasticity tests on human fascia lata. The Journal of Bone and Joint Surgery. 1931;13(2):334.
20. Hsi WL, Lai JS, Yang PY. In-shoe pressure measurements with a viscoelastic heel orthosis. Arch Phys Med Rehabil. Jul 1999;80(7):805-810.
21. Hsu TC, Wang CL, Tsai WC, Kuo JK, Tang FT. Comparison of the mechanical properties of the heel pad between young and elderly adults. Arch Phys Med Rehabil. Sep 1998;79(9):1101-1104.
22. Hsu YC, Gung YW, Shih SL, Feng CK, Wei SH, Yu CH, Chen CS. Using an optimization approach to design an insole for lowering plantar fascia stress-a finite element study. Ann Biomed Eng. Aug 2008;36(8):1345-1352.
23. Irving DB, Cook JL, Menz HB. Factors associated with chronic plantar heel pain: a systematic review. J Sci Med Sport. May 2006;9(1-2):11-22; discussion 23-14.
24. Jahss MH, Kummer F, Michelson JD. Investigationis into the fat pads of the sole of the foot: heel pressure studies. Foot Ankle. 1992;13:227-232.
25. Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res. 1989;7(6):849-860.
26. Keijsers NL, Stolwijk NM, Nienhuis B, Duysens J. A new method to normalize plantar pressure measurements for foot size and foot progression angle. J Biomech. Jan 5 2009;42(1):87-90.
27. Manning DP, Jones C, Rowland FJ, Roff M. The surface roughness of a rubber soling material determines the coefficient of friction on water-lubricated surfaces. J. Safety Res. 1998;29(4):275-283.
28. Onwuanyi ON. Calcaneal spur and plantar heelcpad pain. The Foot. 2000;10:182-185.
29. Ozdemir H, Soyuncu Y, Ozgorgen M, Dabak K. Effects of changes in heel fat pad thickness and elasticity on heel pain. J Am Podiatr Med Assoc. Jan-Feb 2004;94(1):47-52.
30. Perry J. Gait Analysis: Normal and Pathological Function (Hardcover). 1992.
31. Pfeffer G, Bacchetti P, Deland J, Lewis A, Anderson R, Davis W, Alvarez R, Brodsky J, Cooper P, Frey C, Herrick R, Myerson M, Sammarco J, Janecki C, Ross S, Bowman M, Smith R. Comparison of custom and prefabricated orthoses in the initial treatment of proximal plantar fasciitis. Foot Ankle Int. Apr 1999;20(4):214-221.
32. Prichasuk S. The heel pad in plantar heel pain. J Bone Joint Surg Br. Jan 1994;76(1):140-142.
33. Putti AB, Arnold GP, Cochrane L, Abboud RJ. The Pedar in-shoe system: repeatability and normal pressure values. Gait Posture. Mar 2007;25(3):401-405.
34. Redfern MS, Bidanda B. Slip resistance of the shoe-floor interface under biomechanically relevant conditions. Ergonomics. 1994;37(3):511-524.
35. Rome K. Mechanical properties of the heel pad: current theory and review of the literature. The Foot. 1998;8:179-185.
36. Rome K, Campbell R, Flint A, Haslock I. Heel pad thickness-a contributing factor associated with plantar heel pain in young adults. Foot Ankle Int. Feb 2002;23(2):142-147.
37. Rome K, Webb P, Unsworth A, Haslock I. Heel pad stiffness in runners with plantar heel pain. Clin Biomech (Bristol, Avon). Dec 2001;16(10):901-905.
38. Seligman DA, Dawson DR. Customized heel pads and soft orthotics to treat heel pain and plantar fasciitis. Arch Phys Med Rehabil. Oct 2003;84(10):1564-1567.
39. Seuser A, Wallny T, Klein H, Ribbans WJ, Schumpe G, Brackmann HH. Gait analysis of the hemophilic ankle with silicone heel cushion. Clin Orthop Relat Res. Oct 1997(343):74-80.
40. Siegler S, Block J, Schneck CD, Siegler S, Block J, Schneck CD. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot & Ankle. Apr 1988;8(5):234-242.
41. Spears IR, Miller-Young JE, Waters M, Rome K. The effect of loading conditions on stress in the barefooted heel pad. Med Sci Sports Exerc. Jun 2005;37(6):1030-1036.
42. Sun PC, Wei HW, Chen CH, Wu CH, Kao HC, Cheng CK. Effects of varying material properties on the load deformation characteristics of heel cushions. Med Eng Phys. Jul 2008;30(6):687-692.
43. Voloshin A, Wosk J. Influence of artificial shock absorbers on human gait. Clin Orthop Relat Res. Oct 1981(160):52-56.
44. Wright DG, Rennels DC. A Study of the Elastic Properties of Plantar Fascia. The Journal of Bone and Joint Surgery. 1964;46(3):482.
45. Yung-Hui L, Wei-Hsien H. Effects of shoe inserts and heel height on foot pressure, impact force, and perceived comfort during walking. Appl Ergon. May 2005;36(3):355-362.
46. 李侑霖. 足跟墊對足跟受力之影響-有限元素分析. 國立陽明大學物理治療暨輔助科技學系, 碩士論文. 民國97.
47. 張文典. 肌內效貼紮對於足底筋膜炎治療效果研究. 國立陽明大學醫學工程學系, 碩士論文. 民國94.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊