跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/04 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃育祺
研究生(外文):Yu-Chi Huang
論文名稱:帕金森氏症患者於坐姿站起時的運動學分析研究
論文名稱(外文):Kinematic analysis during sit-to-stand in individuals with Parkinson's disease
指導教授:楊雅如楊雅如引用關係
指導教授(外文):Yea-Ru Yang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:52
中文關鍵詞:帕金森氏症坐姿站起手臂位置
外文關鍵詞:Parkinson's diseasesit-to-standarm position
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:1
背景與目的:由坐姿站起是達到日常生活獨立自主的一項重要動作,其中牽涉到姿勢的轉變及重心的轉移。許多帕金森氏症患者執行坐姿站起時容易有姿勢不穩或執行上的困難。而過去的研究大多會限制受試者執行時手臂的擺放位置,這可能會影響到受試者的動作表現。另外,許多因素都可能影響帕金森氏症患者執行坐姿站起的表現,所以研究者有必要去探討此族群執行坐姿站起的影響因子。
研究目的:本研究之目的在探討帕金森氏症患者在雙手交叉於胸前和雙手不受限制情況下,執行坐姿站起時的動作差異;以及探討影響此動作的相關因子。
方法:收取24位原發性帕金森氏症患者,量測其在雙手交叉於胸前和雙手不受限制這兩種情況下執行由坐姿站起的動作,測量個案完成的時間、關節角度及角速度變化以及肌電圖訊號,肌電圖量測下肢四塊肌肉,分別為脛前肌(tibialis anterior)、腓腸(gastrocnemius)、股直肌(rectus femoris)和股二頭肌(biceps femoris),而關節角度及角速度則使用電子量角器測量髖關節、膝關節和踝關節的角度變化及平均角速度。另外,測量個案髖關節和膝關節伸直的等長收縮力量。
統計分析:以配對t檢定(paired samples t-test)檢定組間的差異,顯著信賴水準α值定為0.05;以多元線性迴歸(multiple linear regression)分析影響動作表現的相關因子,分析的因子包括:(1)年齡;(2)髖關節、膝關節和踝關節的屈曲角度;(3)髖關節屈曲、伸直和膝關節伸直的角速度;和(4)髖關節和膝關節的伸直肌的等長收縮力量。
結果:根據過去學者的研究,我們將執行坐姿站起的時間分成三個階段,其中全部完成的時間和phase Ⅱ的時間在雙手不受限制下(3.42±1.85, 0.39±0.44)和雙手抱胸(3.18±1.38, 0.31±0.18)的情況下,有顯著的差異(p<0.05),但為了避免Type Ⅰ錯誤而去修正結果後,則兩種狀況下沒有顯著差異。而在多元回歸分析的結果,在雙手不受限制的情況下,有四個因子進入回歸方程式;而在雙手抱胸的情況下,則只有兩個因子進入了回歸方程式。
討論與結論:本實驗的結果發現帕金森氏症患者在雙手抱胸的情況下執行坐姿站起的速度,會比雙手不受限制的情況快,兩者雖然沒有達到統計上顯著的差異,但是有這樣的趨勢,特別是對曾經發生過跌倒的個案,這樣的趨勢更加明顯,這是跟以往認知較不一致的。而在本實驗中,帕金森氏症患者執行坐姿站起時,影響其表現得較顯著因子為髖關節屈曲和膝關節伸直的角速度,另外,採用雙手抱胸的姿勢站起,對於帕金森氏症患者來說,似乎可以降低他們對於髖關節的依賴,採用較接近健康成年人的動作模式。
Background: Rising from a chair involves the transition from a stable seated position to a relatively unstable upright stance, and requires coordinated contractions of the muscles of the lower extremities and trunk. This task is particularly difficult for elderly individuals with musculoskeletal or neurological disorders, such as Parkinson’s disease (PD). Study of the sit-to-stand (STS) movement is often done with constraints on the use of the arm. However, arm position during the STS movement appears to influence the position of the body’s centre of mass (CoM). Restricting the arms leads to a different pattern of ankle angular displacement, with a much higher mean standard deviation than occurs with the arms free. Additionally, some of the factors may also affect the performance of the individuals with PD during STS task. Therefore it is essential for researchers to focus on the contributing factors that affect this population.
Purposes: The primary purposes of the study were: (1) to compare the performance in subjects with PD during STS task with hand free or with hand folded on chest, (2) to investigate the contributing factors during STS task.
Study design: Exploratory Research.
Methods: This study had recruited twenty-four participants with idiopathic PD. During the STS task, we measured (1) the STS time; (2) EMG of the tibialis anterior, gastrocnemius medialis, rectus femoris, and long head of biceps femoris; (3) displacement of hip flexion, knee flexion, and ankle dorsiflexion; (4) average angular velocity of hip flexion, hip extension, and knee extension. According to previous study, we divided the STS time into three phases. Additionally, we measured the isometric muscle strength of hip extension and knee extension.
Statistical analysis: Means and standard deviations would be calculated for this study. Paired samples t-test and would be employed at the α= .05 level to test for significant between two conditions. Multiple linear regression with stepwise selection model had been used to examine the contributing factors in STS task. The examined factors include (1) age; (2) displacement of hip flexion, knee flexion, and ankle dorsiflexion; (3) average angular velocity of hip flexion, hip extension, and knee extension; (4) isometric muscle strength of hip extension and knee extension.
Results: The time of STS and the time of phase Ⅱ had significant difference between the hand free and hand folded conditions. But, when we modified the results to avoid the type Ⅰ error, there were no significant difference between these two conditions. The factors which had entered the regression model in hand free condition were the angular velocity of knee extension, hip flexion, hip extension, and the isometric muscle strength of hip extension. And in hand folded condition, only angular velocity of hip flexion and knee extension had entered the regression model.
Discussion / Conclusion: It has show a tendency that the velocity of performing STS with hand folded on chest was faster than that with hand free in individuals with PD, especially for PD with falling. In our study, the angular velocity of hip flexion and knee extension are more prominent factors of all variables. We propose that STS task with hand folded on the chest can decrease the dependence of hip for subjects with PD.
Chinese Abstract------------------------------------i
English Abstract------------------------------------iii
Table of Contents--------------------------------------vi
List of Tables-----------------------------------------viii
List of Abbreviations----------------------------------ix
Chapter Ⅰ: Introduction-------------------------------1
1.1 Background-----------------------------------------1
1.2 Purpose and Specific Aims--------------------------3
1.3 Significance of Study------------------------------4
Chapter Ⅱ: Literature Review--------------------------5
2.1 Sit-to-stand---------------------------------------5
2.2 The factors influencing the STS--------------------7
2.3 STS in idiopathic Parkinson’s disease-------------8
2.4 Summary of the literature review ------------------11
Chapter Ⅲ: Methods------------------------------------13
3.1 Study design---------------------------------------13
3.2 Subjects-------------------------------------------13
3.3 Procedure------------------------------------------13
3.4 Outcome measurement--------------------------------14
3.4.1 Sit-to-stand time--------------------------------14
3.4.2 Kinematic data-----------------------------------15
3.4.3 Surface electromyography (EMG) data--------------16
3.4.4 Muscle strength----------------------------------17
3.5 Statistical analysis-------------------------------18
Chapter Ⅳ: Results------------------------------------19
4.1 Demographics---------------------------------------19
4.2 Kinematic------------------------------------------19
4.3 Electromyography-----------------------------------19
4.4 Multiple linear regression-------------------------20
Chapter Ⅴ: Discussion---------------------------------22
5.1 Kinematic variables--------------------------------22
5.2 muscle activation----------------------------------24
5.3 The contributing factors of STS--------------------25
5.4 Recommendations for future studies-----------------26
Chapter Ⅵ: Conclusion---------------------------------27
References List----------------------------------------28
Appendix-----------------------------------------------38
1.Kimmeskamp S, Hennig EM. Heel to toe motion characteristics in Parkinson patients during free walking. Clin Biomech 2001;16:806-12.
2.Braak H, Braak E. Pathoanatomy of Parkinson's disease. J Neurol 2000;247 Suppl 2:II3-10.
3.O’Sullivan S. Parkinson’s Disease. In: Davis PF, editor. Physical Rehabilitation Assessment and Treatment Fourth ed. 2001. p 747-82.
4.Morris ME. Movement disorders in people with Parkinson disease: a model for physical therapy. Phys Ther 2000;80:578-97.
5.Nikfekr E, Kerr K, Attfield S, Playford DE. Trunk movement in Parkinson's disease during rising from seated position. Mov Disord 2002;17:274-82.
6.Schenkman M, Berger RA, Riley PO, Mann RW, Hodge WA. Whole-body movements during rising to standing from sitting. Phys Ther 1990;70:638-51.
7.Brod M, Mendelsohn GA, Roberts B. Patients' experiences of Parkinson's disease. J Gerontol B Psychol Sci Soc Sci 1998;53:P213-22.
8.Janssen WG, Bussmann HB, Stam HJ. Determinants of the sit-to-stand movement: a review. Phys Ther 2002;82:866-79.
9.Etnyre B, Thomas DQ. Event standardization of sit-to-stand movements. Phys Ther 2007;87:1651-68.
10.Scandalis TA, Bosak A, Berliner JC, Helman LL, Wells MR. Resistance training and gait function in patients with Parkinson's disease. Am J Phys Med Rehabil 2001;80:38-43.
11.Schenkman M, Hughes MA, Samsa G, Studenski S. The relative importance of strength and balance in chair rise by functionally impaired older individuals. J Am Geriatr Soc 1996;44:1441-6.
12.Mak MK, Levin O, Mizrahi J, Hui-Chan CW. Joint torques during sit-to-stand in healthy subjects and people with Parkinson's disease. Clin Biomech 2003;18:197-206.
13.Mak MK, Hui-Chan CW. The speed of sit-to-stand can be modulated in Parkinson's disease. Clin Neurophysiol 2005;116:780-9.
14.Mourey F, Grishin A, d'Athis P, Pozzo T, Stapley P. Standing up from a chair as a dynamic equilibrium task: a comparison between young and elderly subjects. J Gerontol A Biol Sci Med Sci 2000;55:B425-31.
15.Riley PO, Schenkman ML, Mann RW, Hodge WA. Mechanics of a constrained chair-rise. J Biomech 1991;24:77-85.
16.Pai YC, Rogers MW. Control of body mass transfer as a function of speed of ascent in sit-to-stand. Med Sci Sports Exerc 1990;22:378-84.
17.Lindemann U, Claus H, Stuber M, Augat P, Muche R, Nikolaus T et al. Measuring power during the sit-to-stand transfer. Eur J Appl Physiol 2003;89:466-70.
18.Schultz A, Thelen, DG, Ashton-Miller, JA, Alexander, NB, Giordani, B, Guire, KE. Physical capacities and mobility performance of old adults. J Am Geriatr Soc 1995;43:SA18.
19.Knutsson E. An analysis of Parkinsonian gait. Brain 1972;95:475-86.
20.Lakke JP. Axial apraxia in Parkinson's disease. J Neurol Sci 1985;69:37-46.
21.Schenkman M, Cutson TM, Kuchibhatla M, Chandler J, Pieper C. Reliability of impairment and physical performance measures for persons with Parkinson's disease. Phys Ther 1997;77:19-27.
22.Inkster LM, Eng JJ, MacIntyre DL, Stoessl AJ. Leg muscle strength is reduced in Parkinson's disease and relates to the ability to rise from a chair. Mov Disord 2003;18:157-62.
23.Inkster LM, Eng JJ. Postural control during a sit-to-stand task in individuals with mild Parkinson's disease. Exp Brain Res 2004;154:33-8.
24.Ramsey VK, Miszko TA, Horvat M. Muscle activation and force production in Parkinson's patients during sit to stand transfers. Clin Biomech 2004;19:377-84.
25.Bishop M, Brunt D, Pathare N, Ko M, Marjama-Lyons J. Changes in distal muscle timing may contribute to slowness during sit to stand in Parkinsons disease. Clin Biomech 2005;20:112-7.
26.Buckley TA, Pitsikoulis C, Hass CJ. Dynamic postural stability during sit-to-walk transitions in Parkinson disease patients. Mov Disord 2008;23:1274-80.
27.Mak MK, Hui-Chan CW. Switching of movement direction is central to parkinsonian bradykinesia in sit-to-stand. Mov Disord 2002;17:1188-95.
28.Perotto A. the limbs and trunk. In: Thomas. C, editor. Anatomical guide for the electromyographer. Springfield; 1994.
29.Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM. Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand Test. Phys Ther 2005;85:1034-45.
30.Galumbeck MH, Buschbacher RM, Wilder RP, Winters KL, Hudson MA, Edlich RF. The Sit & Stand chair. A revolutionary advance in adaptive seating systems. J Long Term Eff Med Implants 2004;14:535-43.
31.Levin O, Mizrahi J, Shoham M. Standing sway: iterative estimation of the kinematics and dynamics of the lower extremities from force-plate measurements. Biol Cybern 1998;78:319-27.
32.Isakov E, Mizrahi J, Ring H, Susak Z, Hakim N. Standing sway and weight-bearing distribution in people with below-knee amputations. Arch Phys Med Rehabil 1992;73:174-8.
33.Steiger MJ, Thompson PD, Marsden CD. Disordered axial movement in Parkinson's disease. J Neurol Neurosurg Psychiatry 1996;61:645-8.
34.Kakinuma S, Nogaki H, Pramanik B, Morimatsu M. Muscle weakness in Parkinson's disease: isokinetic study of the lower limbs. Eur Neurol 1998;39:218-22.
35.Scholz JP, Reisman D, Schoner G. Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task. Exp Brain Res 2001;141:485-500.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top