跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張國芸
研究生(外文):Kuo-Yun Chang
論文名稱:七到十歲兒童足弓發展及相關因子的探討
論文名稱(外文):Foot arch development and the correlating factors in children between seven and ten years of age
指導教授:陳文英陳文英引用關係
指導教授(外文):Wen-Yin Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:76
中文關鍵詞:兒童足弓發展參考值體能活動
外文關鍵詞:childrenfoot arch developmentreference valuephysical activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:扁平足在兒童身上十分常見,嬰兒出生時都是扁平足,足弓會隨著年齡增長而逐漸發展形成,發展最快的時期是在二到六歲,而後速度會慢下來,約在10歲左右發育完成。足弓高度的參考值可以協助臨床醫療人員判斷扁平足兒童是否需要治療。但是,目前臨床上缺乏六歲以上兒童的足弓高度參考值。另外,有許多因素已被提出與足弓相關,例如年齡、性別、身高、體重及關節鬆弛度等等,其中性別、身高與體重與足弓之間的關係仍然未有統一的結論。至今也缺乏探討足弓與體能活動之間關係的研究。考量有哪些因素(包括年齡、性別、身高、體重、關節鬆弛度及體能活動)與兒童足弓發展有關,對於臨床在治療彈性扁平足兒童的決策過程是非常重要的。
研究目的:本研究目的在(一)建立七到十歲兒童足弓(內側縱弓)高度與標準化足弓高度的參考值;以及(二)針對七到十歲兒童的足弓發展與年齡、性別、身高、體重、關節鬆弛度及體能活動的相關性,做整體性探討,以瞭解兒童足弓發展有哪些相關因子及其相關程度為何。
研究方法:本研究為描述型及探索型的研究設計,採橫斷式的研究方式。受測者為國小一到五年級的學生,七到十歲,排除有骨科、神經系統損傷,或是有疼痛或不舒服會影響測量者。基本資料包括姓名、性別、年齡、身高和體重,測量項目包括測量每位兒童的舟狀骨高度、標準化舟狀骨高度、踝關節背屈角度和體能活動。舟狀骨高度為舟狀骨下緣距離地面的高度;標準化舟狀骨高度以舟狀骨高度除以足長來表示;用踝關節背屈角度來表示關節鬆弛度;體能活動以採用中文版Fels體能活動量表(Fels physical activity questionnaire)來表示。每位兒童的左右腳都分別進行測量。
統計分析:(一)描述型統計來表示各年齡層兒童的足弓高度與標準化足弓高度。(二)以三因子變異數分析(three-way analysis of variance)來比較各年齡層男女童之雙腳舟狀骨高度和標準化舟狀骨高度是否有差異。(三)以逐步複迴歸分析來鑑別年齡、性別、身高、體重、關節鬆弛度及體能活動這些因素,有哪些因子與足弓高度或標準化足弓高度有顯著相關。
研究結果:七到十歲兒童的舟狀骨高度平均值(標準差)依序為1.45(0.40)公分、1.76(0.48)公分、1.73(0.46)公分、1.88公分(0.63)公分。七到十歲兒童的標準化舟狀骨高度的平均值(標準差)依序為0.078(0.022)、0.090(0.024)、0.086(0.024)、0.089(0.029)。複迴歸分析的結果顯示身高和關節鬆弛度與舟狀骨高度顯著相關(決定係數為0.14),而關節鬆弛度和年齡與標準化舟狀骨高度顯著相關(決定係數為0.053)。
結論:建立了七到十歲兒童的舟狀骨高度和標準化舟狀骨高度的平均值及正常發展的範圍。本研究探討相關因子與足弓的關係,結果顯示身高與關節鬆弛度為舟狀骨高度的顯著因子,關節鬆弛度為標準化舟狀骨高度的顯著因子。
臨床應用:足弓高度的參考值可供扁平足治療的策略考量。
Background: Flexible flatfoot (FFF) is common in children. Infants are born with FFF. Foot arch develops spontaneously during the first decade of life. The development is fast during 2 and 6 years of age, and then slows down till 10 years of age. Reference values of the normal arch height can help clinicians to determine if children with FFF need treatment or not. However, there is a lack of clinical reference values of the normal arch height and normalized arch height in children older than 6 years of age. In addition, many factors such as age, gender, body height and weight, and joint laxity were suggested to relate to foot arch development. However, the extents to which these factors are related to foot arch development remain uncertain. Considering that physical activity may greatly influence physical development; however, there is a lack of studies that explore relationship between foot arch development and physical activity.
Purposes: The aims of this study are 1) to establish the reference values of the medial longitudinal arch height and the normalized foot arch height in children between 7 and 10 years of age, and 2) to identify significant factors relating to the foot arch development in children between 7 and 10 years of age.
Study design: A descriptive and exploratory cross-sectional study.
Methods: We included children aged between 7 and 10 years of age from elementary schools in Nantou County. Those who had orthopedic or neurological disorders, or had pain or discomfort that might interfere with measurements were excluded. Data collections included age, gender, body height and weight, navicular height and normalized navicular height, joint laxity and physical activity level. Navicular height is the distance from the inferior margin of the navicular head to the floor. Normalized navicular height is navicular height divided by the foot length. We used range of ankle dorsiflexion to indicate the extent of joint laxity. Levels of physical activity are determined by a self-administered questionnaire.
Statistical analyses: 1) Descriptive statistics were presented for the foot arch height and the normalized foot arch height. 2) Three-way analysis of variance was used to examine the effect of different age group, gender and side in navicular height and normalized navicular height. 3) Stepwise multiple regression analyses were used to identify significant factors from age, body weight, body height, joint laxity and the physical activity level to determine if they were significantly associated with the foot arch height or the normalized foot arch height.
Results: The means (standard deviations) of the navicular height for children of seven to ten years of age were 1.45 (0.40) cm, 1.76 (0.48) cm, 1.73 (0.46) cm, and 1.88 (0.63) cm, respectively. The means (standard deviations) of the normalized navicular height for children of seven to ten years of age were 0.078 (0.022), 0.090 (0.024), 0.086 (0.024) and 0.089 (0.029), respectively. Results of stepwise multiple regression analyses identified body height and joint laxity as factors which significantly correlated with the navicular height (R square=0.14) and joint laxity and age as factors significantly correlated with the normalized navicular height (R square=0.054).
Conclusion: We established the reference values of the foot arch height and the normalized foot arch height of children between seven and ten years of age. The results of regression analysis revealed that body height and joint laxity were related to the foot arch height and that joint laxity and age were related to the normalized foot arch height.
Clinical relevance: The reference values of the foot arch height provided the information to assist the clinical judgment in managing the children with flatfoot.
謝誌 i
中文摘要 ii
英文摘要 iv
目錄 vii
表目錄 xi
圖目錄 xiiii
第一章 緒論 1
第一節 研究背景 1
第二節 研究目的 2
第三節 研究重要性 2
第二章 文獻回顧 3
第一節 扁平足 3
一、扁平足的定義及分類 3
二、解剖構造與成因 3
三、扁平足病理機制 4
第二節 兒童扁平足盛行率 6
第三節 足弓發展 7
第四節 測量足弓的方法 9
一、放射線影像測量法 9
二、人體測量法 11
三、足印測量法 12
第五節 影響足弓的相關因子 15
一、足弓與性別的相關性 15
二、足弓與身高體重的相關性 16
三、足弓與關節鬆弛度的相關性 17
四、足弓與體能活動的相關性 19
第六節 文獻回顧的綜合探討 19
第三章 研究方法 21
第一節 研究設計 21
第二節 研究對象 21
第三節 測量項目與測量步驟 22
一、施測者 22
二、測量過程 22
三、前驅研究 25
第四節 資料的統計分析 27
第四章 研究結果 28
第一節 研究對象 28
第二節 三因子變異數分析 28
第三節 七到十歲兒童的足弓發展 29
第四節 各項測量結果分析 30
一、足弓分佈情形 30
二、身體質量值分佈情形 31
三、關節鬆弛分佈情形 31
第五節 七到十歲兒童的足弓發展的相關因子 31
一、年齡、性別、身高、體重、踝關節背屈角度及中文版Fels體能活動問卷對舟狀骨高度的複回歸分析 31
二、年齡、性別、身高、體重、踝關節背屈角度及中文版Fels體能活動問卷對標準化舟狀骨高度的複回歸分析 32
三、性別、身高、體重、踝關節背屈角度及中文版Fels體能活動對各年齡層舟狀骨高度的複回歸分析 33
四、性別、身高、體重、踝關節背屈角度及中文版Fels體能活動對各年齡層標準化舟狀骨高度的複回歸分析 33
第五章 討論 35
第一節 七到十歲兒童的足弓發展情形 35
第二節 七到十歲兒童的足弓發展與各因子之間的相關性 37
一、足弓與性別的關係 37
二、足弓與身高、體重的關係 38
三、足弓與關節鬆弛度的關係 39
四、足弓與體能活動的關係 40
第三節 研究限制及未來研究建議 41
第六章 結論 44
參考文獻 45
附錄
1.Bennett JE, Reinking MF, Pluemer B, Pentel A, Seaton M, Killian C. Factors contributing to the development of medial tibial stress syndrome in high school runners. J. Orthop Sports Phys Ther. 2001;31:504-10
2.Kaufman KR, Brodine S, Shaffer RA, Johnson CW, Cullison TR. The effect of the foot structure and range of motion on musculoskeletal overuse injuries. Am J Sports Med. 1999;27:585-93
3.Mechelen WV. Running injuries. A review of the epidemiological literature. Sports Med. 1992;14:320-35
4.Rolf C. Overuse injuries of the lower extremity in runners. Scand J Med Sci Sports. 1995;5:181-90
5.Mosca VS. Flexible flatfoot and skewfoot. In: Drennan JC, Editor. The child’s foot and ankle. New York: Raven Press; 1992. p. 355-76
6.Staheli LT. Lower positional deformity in infants and children: a review. J Pediatr Orthop 1990;10:559-63
7.Garcia-Rodriguez A, Martin-Jimenez F, Carnero-Varo M, Gomez-Gracia E. Gomez-Aracena J, Fernandez-Crehuet J. Flexible flat feet in children: a real problem? Pediatrics.1999;103:e84-7
8.Harris CR, Beath T. Hypermobile flatfoot with short tendo achillis. J Bone Jt Surg. 1948;30-A:116-38
9.Churgay CA. Diagnosis and treatment of pediatric foot deformities. Am Fam Physician. 1993;47:883-9
10.Sullivan JA. Pediatric flatfoot: evaluation and management. J Am Acad Orthop Surg. 1999;7:44-53
11.Smith MA. Flat feet in children. Br Med J. 1990;301:942-3
12.Magee DJ. Lower leg, ankle, and foot. Orthopedic physical assessment. 4th ed.Philadelphia: Saunders; 2002. p. 765-846
13.Mosca VS, Washington S. Flexible flatfoot and skewfoot. J Bone Jt Surg. 1995;77A:1937-45
14.Basmajian TJ, Stecko G. The role of muscles in arch support of the foot. J Bone Jt Surg.1963;45-A:1184-90
15.Wenger DR, Leach J. Foot deformities in infants and children. Pediatr Clin North Am. 1986;33:1411-27
16.Manter JT. Movements of the subtalar and transverse tarsal joints. Anat Rec. 1941;80:397-401
17.Bordelon RL. Hypermobile flatfoot in children. Comprehension, evaluation, and treatment. Clin Orthop Relat Res.1983;181:7-14
18.McClay I, Manal K. A comparison of three-dimensional lower extremity kinematics during running between excessive pronators and normals. Clin Biomech.1998;13:195-203
19.EI O, Akcali O, Kosay C, Kaner B, Arslan Y, Sagol E. Flexible flatfoot and related factors in primary school children: a report of a screening study. Rheumatol Int.2006;26:1050-3
20.Lin CJ, Lai KA, Chou YL. Correlating factors and clinical significance of flexible flatfoot in preschool children. J Pediatr Orthop 2001;21:378-82.
21.Pfeiffer M, Kotz R, Ledl T, Hauser G, Sluga M. Prevalence of flat foot in preschool-aged children. Pediatrics.2006;118:634-9
22.Gould N, Moreland M, Alvarez R, Trevino S, Fenwick J. Development of the child’s arch. Foot & Ankle.1989;9:241-5
23.Staheli LT, Chew DE, Corbett M. The longitudinal arch. A survey of eight hundred and eighty-two feet in normal children and adults. J Bone Jt Surg 1987;69A:426-8
24.Vanderwilde R, Staheli LT, Chew DE, Malagon V. Measurements on radiographs of the foot in normal infants and children. J Bone Jt Surg. 1988;70-A:407-415
25.Volpon JB. Footprint analysis during the growth period. J Pediatr Orthop. 1994;14:83-5
26.樊志成。花蓮地區三到六歲健康兒童足弓發展及相關因子的探討。國立陽明大學物理治療學系暨研究所碩士論文。2004
27.Rose GK, Welton EA, Marshall T. The diagnosis of flat foot in the child. J Bone Jt Surg.1985;67-B:71-8
28.McPoil TG, Cornwall MW. Use of plantar contact area to predict medial longitudinal arch height during walking. J Am Podiatr Med Assoc. 2006;96:489-94
29.Stavlas P, Grivas TB, Michas C, Vasiliadis E, Polyzois V. The evolution of foot morphology in children between 6 and 17 years of age: A cross-sectional study based on footprints in a Mediterranean population. Foot Ankle Surg. 2005;44:424-8
30.Chen CH, Huang MH, Chen TW, Weng MC, Lee CL, Wang GJ. The correlation between selected measurements from footprint and radiograph of flatfoot. Arch Phys Med Rehabil. 2006;87:235-40
31.Barry RJ, Scranton PE. Flat feet in children. Clin Orthop Relat Res. 1983;181:68-75
32.Saltzman CL, Nawoczenski DA, Talbot KD. Measurement of the medial longitudinal arch. Arch Phys Med Rehabil. 1995;76:45-9
33.Wen DY, Puffer JC, Schmalzried TP. Lower extremity alignment and risk of overuse injuries in runners. Med Sci Sports Exerc. 1997;29:1291-8
34.Williams DS, McClay IS. Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity. Phys Ther. 2000;80:864-71
35.Williams DS, McClay IS, Hamill J. Arch structure and injury patterns in runners. Clin Biomech. 2001;16:341-7
36.Franettovich MM, McPoil TG, Russell T, Skardoon G, Vicenzino B. The ability to predict dynamic foot posture from static measurements. J Am Podiatr Med Assoc. 2007;97:115-20
37.Dahle LK, Mueller M, Delitto A, Diamond JE. Visual assessment of foot type and relationship of foot type to lower extremity injury. J. Orthop Sports Phys Ther. 1991;14:70-74
38.Hawes MR, Nachauer W, Sovak D, Nigg BM. Footprint parameters as a measure of arch height. Foot & Ankle. 1992;13:22-6
39.Kanatli U, Yetkin H, Cila E. Footprint and radiographic analysis of the feet. J Pediatr Orthop. 2001;21:225-8
40.Mathieson I, Upton D, Prior TD. Examining the validity of selected measures of foot type. A preliminary study. J Am Podiatr Med Assoc. 2004;94:275-81
41.Wang TL. The navicular arch index: a reliable and valid footprint parameter to evaluate arch height. J Rehab Med Assoc ROC. 1999;27:183-8
42.Wang CH, Lin CF, Yeung KT, Shih CM, Chen CL. Comparisons of three different measurements in the arch of the foot. Formosan Journal of Physical Therapy. 2001;26:77-84
43.Remvig L, Jensen DV, Ward RC. Are diagnostic criteria for general joint hypermobility and benign joint hypermobility syndrome based on reproducible and valid tests? A review of the literature. J Rheumatol. 2007;34:798-803
44.Cater C, Wilkinson J. Persistent joint laxity and congenital dislocation of the hip. J Bone Jt Surg.1964;46B:40-5
45.Treuth MS, Hou N, Young DR, Maynard M. Validity and reliability of the Fels Physical Activity Questionnaire for children. Med Sci Sports Exerc. 2005;37:488-95
46.Forriol F, Pascual J. Footprint analysis between three and seventeen years of age. Foot & Ankle. 1990;11:101-4
47.Bleck EE, Berzins UJ. Conservative management of Pes Valgus with plantar flexed talus, flexible. Clin Orthop Relat Res. 1977;122:85-94
48.Gilmour JC, Burns Y. The measurement of the medial longitudinal arch in children. Foot Ankle Int.2001;22:493-8
49.Hamill J, van Emmerik RE, Heiderscheit BC, Li L. A dynamical approach to lower extremity running injuries. Clin Biomech. 1999;14:297-308
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊