跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/27 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾信源
研究生(外文):Hsin-Yuan Tseng
論文名稱:重覆性穿顱磁刺激合併任務取向動作訓練對慢性中風病人的療效
論文名稱(外文):Effects of Combining repetitive transcranial magnetic stimulation and task-oriented training in chronic stroke
指導教授:王瑞瑤
指導教授(外文):Ray-Yau Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:59
中文關鍵詞:重覆性穿顱磁刺激任務取向動作訓練療效下肢中風
外文關鍵詞:repetitive transcranial magnetic stimulation (rTMS)task-oriented training (TOT)intervention effectlower extremitystroke
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景及目的:近年來,研究發現重覆性穿顱磁刺激應用於中風患者的復健上,具有相當的價值。認為磁刺激能幫助大腦達到學習效果較佳的狀態,讓後續的物理治療介入更有效率。然而至今,由於此治療應用於中風患者下肢的理論基礎及其長期療效仍未建立,本實驗目的在探討合併重覆性穿顱磁刺激及任務取向動作的訓練,對慢性期中風個案大腦皮質興奮度及行走能力方面的療效。
研究方法:本研究共收取19位慢性期中風個案,隨機分配至實驗組(9位)及控制組(10位)。進行為期2週,每週5次的訓練。每次訓練會先進行10分鐘的重覆性穿顱磁刺激(控制組則為接受假性重覆性穿顱磁刺激),再緊接著30分鐘的任務取向動作訓練。並於治療前、治療後以及治療後一個月分別進行評估。評估有兩大類,分別為利用單脈衝穿顱磁刺激所作的神經電生理檢查以及臨床動作表現。其中,神經電生理檢查為評估大腦皮質的興奮度,量測參數包括運動閾值以及運動誘發電位。臨床的評估則進行下肢行走表現(包括步速、步頻、步寬、空間及時間的步態不對稱性參數)及動作控制(傅格-梅爾下肢動作評估量表)的量測。資料分析採用二因子重覆量測多變異數分析(two-way repeated measures multivariate analysis of variance)分別探討不同組別以及不同時間點之間,神經電生理及臨床動作表現上的差異。統計顯著水準定為p < 0.05。
研究結果:研究結果顯示治療後,兩組在下肢動作控制皆獲顯著改善且效果可持續到治療後一個月,其中實驗組在治療後一個月有更明顯的進步。在步態的空間不對稱性方面,發現實驗組有較明顯改善並可持續到治療後一個月。而就神經電生理檢查的結果,發現在治療後,實驗組患側大腦的運動誘發電位時距有顯著性的下降。
討論及結論:由本研究結果顯示,經過合併重覆性穿顱磁刺激及下肢動作訓練,可提升大腦皮質的興奮度,進而改善慢性中風患者的動作及行走表現。因此對慢性中風的個案來說,合併重覆性穿顱磁刺激的下肢動作訓練是可以有效改善動作表現及大腦皮質的興奮度。
Background and purpose: Recently, it was suggested that the transcranial magnetic stimulation (TMS) provides great value in stroke rehabilitation. The effect of physical therapy would be more efficient after the brain reach the state of being more ready for learning via repetitive TMS (rTMS). Up to the present, the underlying mechanisms and long-term efficacy of rTMS intervention are not established for affected lower extremity in chronic stroke patients. The purpose of this study was to investigate the intervention effects of rTMS followed by task-oriented training (TOT) on the cortical excitability and walking performance in individuals with chronic stroke.
Methods: Nineteen chronic stroke patients, being randomized as nine in the experimental group and ten in control group were included in this study. All participants received rTMS (sham rTMS for control group) followed by TOT for 10 sessions in 2 weeks. Three assessments, including neurophysiological and clinical tests were performed at pre-training, post-training and 1 month follow-up respectively. In neurophysiological test, motor threshold and motor evoked potential were measured to record the cortical excitability. In clinical tests, motor control ability (lower extremity motor score of Fugl-Meyer Assessment) and walking performance (walking velocity, cadence, step width, spatial and temporal gait symmetry) were measured respectively. The difference of each variable between groups and among three time points of assessment were analyzed using two-way repeated measures multivariate analysis of variance (MANOVA). The significant level was set at p < 0.05.
Results: The motor control ability was significantly improved after training and the effect persisted for 1 month in both groups. Further improvement in motor control ability was noted after training only in experimental group. The spatial gait symmetry was also significantly improved after training and such effect lasted for 1 month only in experimental group. In addition, the latency of motor evoked potential over affected hemisphere measured at 1 month after training in the experimental group significantly decreased.
Discussion and Conclusions: The additional rTMS provided chronic stroke patients further improvement in motor recovery, walking symmetry and corticomotor excitability. It was concluded that the intervention of rTMS combined with TOT was safe, applicable and beneficial in stroke rehabilitation.
CONTENTS
Chinese Abstract i
English Abstract iii
Table of Contents v
List of Figures vi
List of Tables vii
CHAPTER I INTRODUCTION 1
1.1 Background 1
1.2 Significance 1
1.3 Purpose 2
CHAPTER II LITERATURE REVIEW 3
2.1 Changes in behavior and brain activation after stroke 3
2.2 Motor recovery and brain reorganization after stroke 4
2.3 Intervention strategies on lower extremities of stroke 6
2.4 Summary 9
CHAPTER III METHODS 10
3.1 Study design 10
3.2 Participants 10
3.3 Procedures 10
3.4 Outcome measures 11
3.5 Intervention protocol and apparatus 14
3.6 Data analysis 15
CHAPTER IV RESULTS 16
4.1 Basic characteristics of the participants 16
4.2 Neurophysiological measures 17
4.3 Clinical measures 18
4.4 Descriptive results in stroke with no MEP evoked 19
CHAPTER V DISCUSSION 21
5.1 Basic characteristics of included participants 21
5.2 Neurophysiological measures 21
5.3 Clinical measures 23
5.4 Protocol in this study 26
5.5 The lasting effect and long-term effect 27
5.6 The underlying mechanism 27
5.7 Limitations in this study 29
5.8 Recommendations for further studies 29
CHAPTER VI CONCLUSION 30
REFERENCES 31
APPENDICES 51
Appendix 1 Lower Extremity Motor score of Fugl-Meyer Assessment 51
Appendix 2 Intervention Protocol of this study 52
Appendix 3 TMS Assessment protocol of this study 53
Appendix 4 Approval from the Institutional Review Board 54
Appendix 5 The Consent Form 55
1. Epidemiologic statistics on the leading cause of death in Taiwan, 2009. Retrieved July 1, 2009, from the World Wide Web: http://www.doh.gov.tw/.
2. Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B, Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 2001;32(12):2735-40.
3. Gresham GE, Fitzpatrick TE, Wolf PA, McNamara PM, Kannel WB, Dawber TR. Residual disability in survivors of stroke--the Framingham study. N Engl J Med 1975;293(19):954-6.
4. Latham NK, Jette DU, Slavin M, Richards LG, Procino A, Smout RJ et al. Physical therapy during stroke rehabilitation for people with different walking abilities. Arch Phys Med Rehabil 2005;86(12 Suppl 2):S41-S50.
5. Harris JE, Eng JJ. Goal priorities identified by individuals with chronic stroke: implications for rehabilitation professionals. Physiother Can 2004;56:171-6.
6. Bohannon RW. Determinants of transfer capacity in patients with hemiplegia. Physiother Can 1988;40:236-9.
7. O’Sullivan SB. Stroke. In: O’Sullivan SB, Schmitz TJ, editors. Physical Rehabilitation: Assessment and Treatment. 4 ed. Philadelphia: FA Davis Co; 2001. p 519-82.
8. Harris MH, Holden MK, Cahalin LP, Fitzpatrick D, Lowe S, Canavan PK. Gait in older adults: a review of the literature with an emphasis toward achieving favorable clinical outcomes, part II. Clin Geriatr 2008;8:37-45.
9. Rossini PM, Calautti C, Pauri F, Baron JC. Post-stroke plastic reorganisation in the adult brain. Lancet Neurol 2003;2(8):493-502.
10. Boylan LS, Sackeim HA. Magnetoelectric brain stimulation in the assessment of brain physiology and pathophysiology. Clin Neurophysiol 2000;111(3):504-12.
11. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol 2003;2(3):145-56.
12. Liepert J, Hamzei F, Weiller C. Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve 2000;23(11):1761-3.
13. Dafotakis M, Grefkes C, Eickhoff SB, Karbe H, Fink GR, Nowak DA. Effects of rTMS on grip force control following subcortical stroke. Exp Neurol 2008;211(2):407-12.
14. Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 2004;55(3):400-9.
15. Rossini PM, Rossi S. Clinical applications of motor evoked potentials. Electroencephalogr Clin Neurophysiol 1998;106(3):180-94.
16. Thickbroom GW, Byrnes ML, Archer SA, Mastaglia FL. Motor outcome after subcortical stroke correlates with the degree of cortical reorganization. Clin Neurophysiol 2004;115(9):2144-50.
17. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 2007;130(Pt 1):170-80.
18. Traversa R, Cicinelli P, Pasqualetti P, Filippi M, Rossini PM. Follow-up of interhemispheric differences of motor evoked potentials from the 'affected' and 'unaffected' hemispheres in human stroke. Brain Res 1998;803(1-2):1-8.
19. Piron L, Piccione F, Tonin P, Dam M. Clinical correlation between motor evoked potentials and gait recovery in poststroke patients. Arch Phys Med Rehabil 2005;86(9):1874-8.
20. Hendricks HT, Pasman JW, van Limbeek J, Zwarts MJ. Motor evoked potentials of the lower extremity in predicting motor recovery and ambulation after stroke: a cohort study. Arch Phys Med Rehabil 2003;84(9):1373-9.
21. Jang SH. A review of motor recovery mechanisms in patients with stroke. NeuroRehabilitation 2007;22(4):253-9.
22. Ward NS. Future perspectives in functional neuroimaging in stroke recovery. Eura Medicophys 2007;43(2):285-94.
23. Calautti C, Baron JC. Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 2003;34(6):1553-66.
24. Werhahn KJ, Conforto AB, Kadom N, Hallett M, Cohen LG. Contribution of the ipsilateral motor cortex to recovery after chronic stroke. Ann Neurol 2003;54(4):464-72.
25. Misawa S, Kuwabara S, Matsuda S, Honma K, Ono J, Hattori T. The ipsilateral cortico-spinal tract is activated after hemiparetic stroke. Eur J Neurol 2008;15(7):706-11.
26. Eng JJ, Tang PF. Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence. Expert Rev Neurother 2007;7(10):1417-36.
27. Carr JH, Shepherd RB. Stroke rehabilitation: guidelines for exercise and training to optimize motor skill. Edinburgh: Butterworth-Heinneman; 2003.
28. Ng SS, Hui-Chan CW. Transcutaneous electrical nerve stimulation combined with task-related training improves lower limb functions in subjects with chronic stroke. Stroke 2007;38(11):2953-9.
29. Fritz SL, Pittman AL, Robinson AC, Orton SC, Rivers ED. An intense intervention for improving gait, balance, and mobility for individuals with chronic stroke: a pilot study. J Neurol Phys Ther 2007;31(2):71-6.
30. Yang YR, Wang RY, Lin KH, Chu MY, Chan RC. Task-oriented progressive resistance strength training improves muscle strength and functional performance in individuals with stroke. Clin Rehabil 2006;20(10):860-70.
31. Dean CM, Richards CL, Malouin F. Task-related circuit training improves performance of locomotor tasks in chronic stroke: a randomized, controlled pilot trial. Arch Phys Med Rehabil 2000;81(4):409-17.
32. French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A et al. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev 2007(4):CD006073.
33. Williams JA, Imamura M, Fregni F. Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine. J Rehabil Med 2009;41(5):305-11.
34. Butler AJ, Wolf SL. Putting the brain on the map: use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement. Phys Ther 2007;87(6):719-36.
35. Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 2007;3(7):383-93.
36. Duffau H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J Clin Neurosci 2006;13(9):885-97.
37. Takeuchi N, Tada T, Toshima M, Chuma T, Matsuo Y, Ikoma K. Inhibition of the unaffected motor cortex by 1 Hz repetitive transcranical magnetic stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke. J Rehabil Med 2008;40(4):298-303.
38. Mally J, Dinya E. Recovery of motor disability and spasticity in post-stroke after repetitive transcranial magnetic stimulation (rTMS). Brain Res Bull 2008;76(4):388-95.
39. Pomeroy VM, Cloud G, Tallis RC, Donaldson C, Nayak V, Miller S. Transcranial magnetic stimulation and muscle contraction to enhance stroke recovery: a randomized proof-of-principle and feasibility investigation. Neurorehabil Neural Repair 2007;21(6):509-17.
40. Liepert J, Zittel S, Weiller C. Improvement of dexterity by single session low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in acute stroke: a double-blind placebo-controlled crossover trial. Restor Neurol Neurosci 2007;25(5-6):461-5.
41. Fregni F, Boggio PS, Valle AC, Rocha RR, Duarte J, Ferreira MJ et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 2006;37(8):2115-22.
42. Boggio PS, Alonso-Alonso M, Mansur CG, Rigonatti SP, Schlaug G, Pascual-Leone A et al. Hand function improvement with low-frequency repetitive transcranial magnetic stimulation of the unaffected hemisphere in a severe case of stroke. Am J Phys Med Rehabil 2006;85(11):927-30.
43. Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke 2005;36(12):2681-6.
44. Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005;128(Pt 3):490-9.
45. Carey JR, Fregni F, Pascual-Leone A. rTMS combined with motor learning training in healthy subjects. Restor Neurol Neurosci 2006;24(3):191-9.
46. Nowak DA, Grefkes C, Ameli M, Fink GR. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair 2009 [Epub ahead of print].
47. Hallet M, Wassermann EM, Pascual-Leone A, Valls-Sole J. Repetitive transcranial magnetic stimulation. In: Deuschl G, Eisen A, editors. Recommendations for the practice of clinical neurophysiology: guidelines of the international federation of clinical physiology (EEG Suppl 52). Elsevier Science BV; 1999. p 105-13.
48. Herwig U, Satrapi P, Schonfeldt-Lecuona C. Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 2003;16(2):95-9.
49. Awiszus F. TMS and threshold hunting. In: Paulus W, Tergau F, Nitsche MA, Rothwell JC, Ziemann U, Hallett M, editors. Transcranial magnetic stimulation and transcranial direct current stimulation (Supplements to clinical neurophysiology, Vol 56). Elsevier Science BV; 2003. p 13-23.
50. Hendricks HT, Pasman JW, Merx JL, van Limbeek J, Zwarts MJ. Analysis of recovery processes after stroke by means of transcranial magnetic stimulation. J Clin Neurophysiol 2003;20(3):188-95.
51. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 1975;7(1):13-31.
52. Barak S, Duncan PW. Issues in selecting outcome measures to assess functional recovery after stroke. NeuroRx 2006;3(4):505-24.
53. Lin PY, Yang YR, Cheng SJ, Wang RY. The relation between ankle impairments and gait velocity and symmetry in people with stroke. Arch Phys Med Rehabil 2006;87(4):562-8.
54. Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol 1998;108(1):1-16.
55. Forrester LW, Hanley DF, Macko RF. Effects of treadmill exercise on transcranial magnetic stimulation-induced excitability to quadriceps after stroke. Arch Phys Med Rehabil 2006;87(2):229-34.
56. Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil 2007;21(1):17-27.
57. Salbach NM, Mayo NE, Robichaud-Ekstrand S, Hanley JA, Richards CL, Wood-Dauphinee S. The effect of a task-oriented walking intervention on improving balance self-efficacy poststroke: a randomized, controlled trial. J Am Geriatr Soc 2005;53(4):576-82.
58. Salbach NM, Mayo NE, Wood-Dauphinee S, Hanley JA, Richards CL, Cote R. A task-orientated intervention enhances walking distance and speed in the first year post stroke: a randomized controlled trial. Clin Rehabil 2004;18(5):509-19.
59. Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005;22(1):51-6.
60. Nowak DA, Grefkes C, Dafotakis M, Eickhoff S, Kust J, Karbe H et al. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Arch Neurol 2008;65(6):741-7.
61. Oken O, Yavuzer G. Spatio-temporal and kinematic asymmetry ratio in subgroups of patients with stroke. Eur J Phys Rehabil Med 2008;44(2):127-32.
62. Balasubramanian CK, Bowden MG, Neptune RR, Kautz SA. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch Phys Med Rehabil 2007;88(1):43-9.
63. Luft AR, Macko RF, Forrester LW, Villagra F, Ivey F, Sorkin JD et al. Treadmill exercise activates subcortical neural networks and improves walking after stroke: a randomized controlled trial. Stroke 2008;39(12):3341-50.
64. Enzinger C, Johansen-Berg H, Dawes H, Bogdanovic M, Collett J, Guy C et al. Functional MRI correlates of lower limb function in stroke victims with gait impairment. Stroke 2008;39(5):1507-13.
65. Luft AR, Forrester L, Macko RF, McCombe-Waller S, Whitall J, Villagra F et al. Brain activation of lower extremity movement in chronically impaired stroke survivors. Neuroimage 2005;26(1):184-94.
66. Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 2006;117(12):2584-96.
67. Wheaton LA, Villagra F, Hanley DF, Macko RF, Forrester LW. Reliability of TMS motor evoked potentials in quadriceps of subjects with chronic hemiparesis after stroke. J Neurol Sci 2009;276(1-2):115-7.
68. Peinemann A, Reimer B, Loer C, Quartarone A, Munchau A, Conrad B et al. Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clin Neurophysiol 2004;115(7):1519-26.
69. Kobayashi M, Hutchinson S, Theoret H, Schlaug G, Pascual-Leone A. Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements. Neurology 2004;62(1):91-8.
70. Gilio F, Rizzo V, Siebner HR, Rothwell JC. Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex. J Physiol 2003;551(Pt 2):563-73.
71. Peinemann A, Lehner C, Mentschel C, Munchau A, Conrad B, Siebner HR. Subthreshold 5-Hz repetitive transcranial magnetic stimulation of the human primary motor cortex reduces intracortical paired-pulse inhibition. Neurosci Lett 2000;296(1):21-4.
72. Lee L, Siebner H, Bestmann S. Rapid modulation of distributed brain activity by Transcranial Magnetic Stimulation of human motor cortex. Behav Neurol 2006;17(3-4):135-48.
73. Kleim JA, Kleim ED, Cramer SC. Systematic assessment of training-induced changes in corticospinal output to hand using frameless stereotaxic transcranial magnetic stimulation. Nat Protoc 2007;2(7):1675-84.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊