跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林容安
研究生(外文):Jung-An Lin
論文名稱:探討miR-24在口腔癌中扮演的角色及分子機轉
論文名稱(外文):An investigation of the roles and the molecular effects of miR-24 in oral aquamous cell carcinoma
指導教授:張國威
指導教授(外文):Kuo-Wei Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:62
中文關鍵詞:微型RNA口腔癌
外文關鍵詞:miR-24OSCC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
口腔癌在國人癌症死亡人口中佔10%,死亡率排名第六,故研究癌細胞發生病變的原因和機制以及發展診斷工具是當前重要的領域。口腔癌為發生在口腔部位之惡性腫瘤的總稱,其中以鱗狀細胞癌佔絕大多數,佔約九成。微型RNA (microRNA,miRNA)為動植物基因組中廣泛存在非編碼蛋白的RNA 基因,產生長度大約為19-25個核苷酸的RNA。由文獻回顧可知,miRNA可以扮演癌症的促進者,也可以是致癌基因的抑制者。研究發現,在口腔癌細胞中miR-24的表現量高於正常人類口腔角質細胞。因此,本研究欲探討miR-24在口腔癌細胞的癌化進程中,是否透過抑制目標基因,扮演重要調控角色。建立SAS-miR24穩定表現細胞株,並確認能以LNA有效抑制口腔癌細胞內生性miR-24表現之後,發現miR-24過度表現之口腔癌細胞,生長速度較快;反之經過miR-24 抑制劑處理之口腔癌細胞,生長速度受到抑制。另外,miR-24對於口腔癌之影響,目前已排除其造成上皮細胞轉型成間葉細胞之現象(EMT),以及對於細胞移行及分化的影響。miR-24影響細胞的機制,可能在於增加細胞生長速度,亦或是具有抵抗細胞凋亡之能力。並且,在臨床檢體中發現口腔癌病人之癌化組織中miR-24的表現量高於其正常組織;且口腔癌病人血液中miR-24的表現量高於正常人。研究結果顯示,miR-24可能為口腔癌之正向調控微型RNA。
The epidemiologic analysis shows that mortality rate of oral cancer takes the sixth place in Taiwan. Oral cancer is known as malignant tumors happen at any part of the oral cavity. For more than 90%, oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. It is crucial to investigate the pathological changes and develop diagnostic tools. microRNAs (miRNA) are non-coding single-stranded RNA molecules of 19-25 nucleotides in length, which regulate genes expression. The roles of miRNAs in cancer might be tumor enhancers or suppressors. The expression of miR-24 in OSCC cell lines is higher than normal human oral keratinocytes. By over expression and knockdown of miR-24 expression, the analysis shows that the growth rate of OSCC cells is associated with miR-24 expression. This effect might through controlling cell cycle or anti-apoptosis pathway. It is excluded that miR-24 affects EMT, cell migration and differentiation of OSCC. Interestingly, the expression of miR-24 in OSCC tissue is higher than normal tissue and the expression of miR-24 in OSCC patient plasma is higher than plasma from normal controls. This result shows the potential of miR-24 to become a bio-marker for oral cancer. Moreover, the evidences show that miR-24 might be an oncomiR in OSCC.
中文摘要 …………………………………………………… 1

英文摘要 …………………………………………………… 2

緒 論 …………………………………………………… 3

研究目的 …………………………………………………… 8

實驗材料與方法…………………………………………… 9

實驗結果 …………………………………………………… 21

結果討論 …………………………………………………… 27

結果圖表 …………………………………………………… 31

參考文獻 …………………………………………………… 49

附 表 …………………………………………………… 57

附 圖 …………………………………………………… 62
1. Lee, J. H., Barich, F., Karnell, L. H., Robinson, R. A., Zhen, W. K., Gantz, B. J., and Hoffman, H. T. National Cancer Data Base report on malignant paragangliomas of the head and neck. Cancer, 94: 730-737, 2002.
2. Alam, M. and Ratner, D. Cutaneous squamous-cell carcinoma. N Engl J Med, 344: 975-983, 2001.
3. Beringer, M. and Rodnina, M. V. The ribosomal peptidyl transferase. Mol Cell, 26: 311-321, 2007.
4. Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiler, S., and Sharp, P. A. Splicing of messenger RNA precursors. Annu Rev Biochem, 55: 1119-1150, 1986.
5. Smith, C. M. and Steitz, J. A. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell, 89: 669-672, 1997.
6. Soll, D. and RajBhandary, U. L. The genetic code - thawing the 'frozen accident'. J Biosci, 31: 459-463, 2006.
7. Lee, R. C., Feinbaum, R. L., and Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75: 843-854, 1993.
8. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403: 901-906, 2000.
9. Visone, R. and Croce, C. M. MiRNAs and cancer. Am J Pathol, 174: 1131-1138, 2009.
10. Bracht, J., Hunter, S., Eachus, R., Weeks, P., and Pasquinelli, A. E. Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA, 10: 1586-1594, 2004.
11. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., and Kim, V. N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23: 4051-4060, 2004.
12. Borchert, G. M., Lanier, W., and Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 13: 1097-1101, 2006.
13. Yi, R., Qin, Y., Macara, I. G., and Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17: 3011-3016, 2003.
14. Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., and Zamore, P. D. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293: 834-838, 2001.
15. Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev, 15: 2654-2659, 2001.
16. Tang, G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci, 30: 106-114, 2005.
17. Ghildiyal, M. and Zamore, P. D. Small silencing RNAs: an expanding universe. Nat Rev Genet, 10: 94-108, 2009.
18. Wightman, B., Ha, I., and Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75: 855-862, 1993.
19. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113: 25-36, 2003.
20. Doench, J. G. and Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev, 18: 504-511, 2004.
21. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., and Johnson, J. M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433: 769-773, 2005.
22. Lytle, J. R., Yario, T. A., and Steitz, J. A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci U S A, 104: 9667-9672, 2007.
23. Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., and Croce, C. M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 99: 15524-15529, 2002.
24. O'Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G., and Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A, 104: 1604-1609, 2007.
25. Michael, M. Z., SM, O. C., van Holst Pellekaan, N. G., Young, G. P., and James, R. J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res, 1: 882-891, 2003.
26. Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., Harano, T., Yatabe, Y., Nagino, M., Nimura, Y., Mitsudomi, T., and Takahashi, T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 64: 3753-3756, 2004.
27. Chan, J. A., Krichevsky, A. M., and Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res, 65: 6029-6033, 2005.
28. Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., Menard, S., Palazzo, J. P., Rosenberg, A., Musiani, P., Volinia, S., Nenci, I., Calin, G. A., Querzoli, P., Negrini, M., and Croce, C. M. MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65: 7065-7070, 2005.
29. Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., and Croce, C. M. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A, 102: 13944-13949, 2005.
30. Akao, Y., Nakagawa, Y., and Naoe, T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull, 29: 903-906, 2006.
31. Scott, G. K., Goga, A., Bhaumik, D., Berger, C. E., Sullivan, C. S., and Benz, C. C. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem, 282: 1479-1486, 2007.
32. Chang, K. W., Liu, C. J., Chu, T. H., Cheng, H. W., Hung, P. S., Hu, W. Y., and Lin, S. C. Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma. J Dent Res, 87: 1063-1068, 2008.
33. Henson, B. J., Bhattacharjee, S., O'Dee, D. M., Feingold, E., and Gollin, S. M. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer, 48: 569-582, 2009.
34. Kozaki, K., Imoto, I., Mogi, S., Omura, K., and Inazawa, J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res, 68: 2094-2105, 2008.
35. Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., Vadas, M. A., Khew-Goodall, Y., and Goodall, G. J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 10: 593-601, 2008.
36. Wong, T. S., Liu, X. B., Wong, B. Y., Ng, R. W., Yuen, A. P., and Wei, W. I. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res, 14: 2588-2592, 2008.
37. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science, 294: 853-858, 2001.
38. Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J., Mann, M., and Dreyfuss, G. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev, 16: 720-728, 2002.
39. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. New microRNAs from mouse and human. RNA, 9: 175-179, 2003.
40. Cheng, A. M., Byrom, M. W., Shelton, J., and Ford, L. P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res, 33: 1290-1297, 2005.
41. Kasashima, K., Nakamura, Y., and Kozu, T. Altered expression profiles of microRNAs during TPA-induced differentiation of HL-60 cells. Biochem Biophys Res Commun, 322: 403-410, 2004.
42. Wang, Q., Huang, Z., Xue, H., Jin, C., Ju, X. L., Han, J. D., and Chen, Y. G. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood, 111: 588-595, 2008.
43. Lal, A., Kim, H. H., Abdelmohsen, K., Kuwano, Y., Pullmann, R., Jr., Srikantan, S., Subrahmanyam, R., Martindale, J. L., Yang, X., Ahmed, F., Navarro, F., Dykxhoorn, D., Lieberman, J., and Gorospe, M. p16(INK4a) translation suppressed by miR-24. PLoS ONE, 3: e1864, 2008.
44. Sun, Q., Zhang, Y., Yang, G., Chen, X., Cao, G., Wang, J., Sun, Y., Zhang, P., Fan, M., Shao, N., and Yang, X. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res, 36: 2690-2699, 2008.
45. Meng, C. L., Yang, C. Y., Shen, K. L., Wong, P. Y., and Lee, H. K. Inhibition of the synthesis of eicosanoid-like substances in a human oral cancer cell line by interferon-gamma and eicosapentaenoic acid. Arch Oral Biol, 43: 979-986, 1998.
46. Jeng, J. H., Kuo, M. Y., Lee, P. H., Wang, Y. J., Lee, M. Y., Lee, J. J., Lin, B. R., Tai, T. F., and Chang, M. C. Toxic and metabolic effect of sodium butyrate on SAS tongue cancer cells: role of cell cycle deregulation and redox changes. Toxicology, 223: 235-247, 2006.
47. Kok, S. H., Cheng, S. J., Hong, C. Y., Lee, J. J., Lin, S. K., Kuo, Y. S., Chiang, C. P., and Kuo, M. Y. Norcantharidin-induced apoptosis in oral cancer cells is associated with an increase of proapoptotic to antiapoptotic protein ratio. Cancer Lett, 217: 43-52, 2005.
48. Hung, P. S., Kao, S. Y., Shih, Y. H., Chiou, S. H., Liu, C. J., Chang, K. W., and Lin, S. C. Insulin-like growth factor binding protein-5 (IGFBP-5) suppresses the tumourigenesis of head and neck squamous cell carcinoma. J Pathol, 214: 368-376, 2008.
49. Jepsen, J. S. and Wengel, J. LNA-antisense rivals siRNA for gene silencing. Curr Opin Drug Discov Devel, 7: 188-194, 2004.
50. Alves, C. C., Carneiro, F., Hoefler, H., and Becker, K. F. Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci, 14: 3035-3050, 2009.
51. Xu, J., Lamouille, S., and Derynck, R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res, 19: 156-172, 2009.
52. Moreno-Bueno, G., Portillo, F., and Cano, A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene, 27: 6958-6969, 2008.
53. Shieh, T. M., Lin, S. C., Liu, C. J., Chang, S. S., Ku, T. H., and Chang, K. W. Association of expression aberrances and genetic polymorphisms of lysyl oxidase with areca-associated oral tumorigenesis. Clin Cancer Res, 13: 4378-4385, 2007.
54. Lin, S. C., Wang, C. P., Chen, Y. M., Lu, S. Y., Fann, M. J., Liu, C. J., Kao, S. Y., and Chang, K. W. Regulation of IGFBP-5 expression during tumourigenesis and differentiation of oral keratinocytes. J Pathol, 198: 317-325, 2002.
55. Deterding, R. R., Jacoby, C. R., and Shannon, J. M. Acidic fibroblast growth factor and keratinocyte growth factor stimulate fetal rat pulmonary epithelial growth. Am J Physiol, 271: L495-505, 1996.
56. Altavilla, G., Staffieri, A., Busatto, G., Canesso, A., Giacomelli, L., and Marioni, G. Expression of p53, p16(INK4A), pRb, p21(WAF1/CIP1), p27(KIP1), cyclin D1, Ki-67 and HPV DNA in sinonasal endophytic Schneiderian (inverted) papilloma. Acta Otolaryngol: 1-8, 2008.
57. An, Y., Gao, Z., Wang, Z., Yang, S., Liang, J., Feng, Y., Kato, K., Nakano, M., Okada, S., and Yamanaka, K. Immunohistochemical analysis of oxidative DNA damage in arsenic-related human skin samples from arsenic-contaminated area of China. Cancer Lett, 214: 11-18, 2004.
58. Kivinen, K., Kallajoki, M., and Taimen, P. Caspase-3 is required in the apoptotic disintegration of the nuclear matrix. Exp Cell Res, 311: 62-73, 2005.
59. Conney, A. H., Lou, Y. R., Xie, J. G., Osawa, T., Newmark, H. L., Liu, Y., Chang, R. L., and Huang, M. T. Some perspectives on dietary inhibition of carcinogenesis: studies with curcumin and tea. Proc Soc Exp Biol Med, 216: 234-245, 1997.
60. Lal, A., Pan, Y., Navarro, F., Dykxhoorn, D. M., Moreau, L., Meire, E., Bentwich, Z., Lieberman, J., and Chowdhury, D. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol, 16: 492-498, 2009.
61. Avino, A., Ocampo, S. M., Caminal, C., Perales, J. C., and Eritja, R. Stepwise synthesis of RNA conjugates carrying peptide sequences for RNA interference studies. Mol Divers, 2009.
62. Muthurajan, U. M., Park, Y. J., Edayathumangalam, R. S., Suto, R. K., Chakravarthy, S., Dyer, P. N., and Luger, K. Structure and dynamics of nucleosomal DNA. Biopolymers, 68: 547-556, 2003.
63. Motoyama, N. and Naka, K. DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev, 14: 11-16, 2004.
64. Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., and Bonner, W. M. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol, 10: 886-895, 2000.
65. Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., Prueitt, R. L., Yanaihara, N., Lanza, G., Scarpa, A., Vecchione, A., Negrini, M., Harris, C. C., and Croce, C. M. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 103: 2257-2261, 2006.
66. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O'Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., and Tewari, M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 105: 10513-10518, 2008.
67. Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., Benjamin, H., Kushnir, M., Cholakh, H., Melamed, N., Bentwich, Z., Hod, M., Goren, Y., and Chajut, A. Serum microRNAs are promising novel biomarkers. PLoS ONE, 3: e3148, 2008.
68. Terato, H., Tanaka, R., Nakaarai, Y., Furusawa, Y., and Ide, H. Analysis of DNA damage generated by high-energy particles. Nucleic Acids Symp Ser (Oxf): 145-146, 2004.
69. Taylor, D. D. and Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol, 110: 13-21, 2008.
70. Runne, H., Kuhn, A., Wild, E. J., Pratyaksha, W., Kristiansen, M., Isaacs, J. D., Regulier, E., Delorenzi, M., Tabrizi, S. J., and Luthi-Carter, R. Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood. Proc Natl Acad Sci U S A, 104: 14424-14429, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top