跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 15:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳智華
研究生(外文):Zhi-Hwa Chen
論文名稱:不同晶相結構之二氧化鈦薄膜對鈦金屬材料表面凝血作用的影響
論文名稱(外文):Blood coagulation on titanium surface with different crystal structures of titanium dioxide
指導教授:黃何雄
指導教授(外文):Her-Hsiung Huang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:79
中文關鍵詞:二氧化鈦銳鈦礦相金紅石相介電常數凝血
外文關鍵詞:TitaniumTitanium dioxideAnataseRutileDielectric constantBlood coagulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當鈦植體被植入體內時,血液是第一個接觸到植體材料表面的物質,並且會馬上引發凝血反應來幫助傷口癒合及後續細胞組織的生長,因此血液的凝結是初期骨癒合過程中重要的第一步。目前在生醫工程的領域中對於材料表面誘發凝血作用的機制並不是非常的瞭解。一般認為,金屬材料表面所引發的內在因子凝血路徑的活化,是由於極性材料表面所帶有的負電,誘發凝血第12因子活化而觸發一系列接觸活化作用,最後形成的網狀纖維蛋白與活化血小板構成血塊而達到凝血的作用,但對於鈦植體材料表面的物理及化學性質如何影響凝血反應的機制仍不甚明瞭。
本研究之主要目的即是針對鈦金屬材料經過表面處理後常見的兩種二氧化鈦薄膜晶相結構:銳鈦礦相及金紅石相,將此兩種晶相依不同比例以物理氣相沈積法製備於鈦基材表面,並分別就其表面性質進行表面形貌、薄膜厚度、二氧化鈦晶相結構、以及二氧化鈦薄膜表面自由能與介電常數的分析,接著於不同晶相結構的試片表面進行其全血凝固和第12凝血因子的接觸活化分析、纖維蛋白原、纖維蛋白與血小板的貼附觀察比較,藉由觀察不同二氧化鈦晶相結構薄膜表面性質的改變來比較其對凝血作用的影響,並探討晶相結構對表面電性的影響與凝血作用活化機制的關係。
實驗結果顯示,不同晶相結構之材料表面自由能雖差異不大,但隨著金紅石相含量增加,二氧化鈦薄膜的介電常數會由銳鈦礦相的24.9大幅上升至金紅石相的143.7,表示二氧化鈦薄膜的電容量會隨著銳鈦礦相轉變成金紅石相而提高。而於凝血性質分析的部分則發現,隨著銳鈦礦相至金紅石相的相變化轉移,全血於不同晶相結構材料表面凝集情況的差異雖然不明顯,但二氧化鈦薄膜表面纖維蛋白及血小板的貼附量卻上升,且貼附聚集和細胞攤平及觸角延伸的情況也較明顯,同時也觀察到金紅石相表面所活化第12凝血因子的量也較高。因此根據實驗結果認為,當二氧化鈦薄膜因為相變化由銳鈦礦相轉變為金紅石相,其薄膜介電常數(電容值)會大幅提高,而此表面電性的改變會使得材料表面對於第12凝血因子接觸活化作用以及血小板的貼附增加,進而影響後續凝血作用的發生。
When a titanium (Ti) implant is placed in human body, blood will be the first component to interact with implant surface, which an immediate blood coagulation process will be activated, helping the continued wound healing and tissue cell growth at the implant site, so one could say blood coagulation is an important first step for the early stage of osseointergration. But the mechanism of blood coagulation process activated by material surfaces is not entirely understood nowadays. Generally speaking as the intrinsic coagulation pathway will be activated by negatively charged Ti material surface, which a blood coagulation factor XII will first be contact-activated, then a chain of coagulation factors will be trigger and reacted, ultimately forming a bunch of fibrin mesh and binding with other activated platelets and red blood cells to form blood clots. However, the mechanism of how the physical, chemical and electrical properties of Ti implant surface effect the coagulation reaction still remains unclear.
The aim of this study was to estimate the blood coagulation properties of two kinds of TiO2 crystal structure: anatase and rutile, which happen to have tremendous differences in their surface electrical properties, and by investigating the surface free energy and dielectric constant of both thin film surfaces, we may compare and evaluate the effect of surface electric properties to the hemocompatiblity of TiO2 films.
The results show that, after PVD surface modification, although the surface free energy didn’t show obvious difference between anatase and rutile, but along with increase amount of rutile structure, the dielectric constant increased tremendously, as the activation of FXII, adsorption of fibrinogen, formation of fibrin network and adhesion of platelet, all show the same tendency.
論文電子檔著作權授權書 …………………………………… i
論文審定同意書 ……………………………………………… ii
誌謝 …………………………………………………………… iii
中文摘要 ……………………………………………………… iv
英文摘要 ……………………………………………………… vi
目錄 …………………………………………………………… viii
表目錄 ………………………………………………………… x
圖目錄 ………………………………………………………… xi

第一章 研究背景與目的 …………………………… 1
1.1生醫材料表面特性與生物相容性之關係……………… 1
1.2生醫材料的凝血性質…………………………………… 2
1.3 金屬植體表面之凝血作用…………………………… 3
1.4 鈦金屬之特性………………………………………… 5
1.5 具生物相容性的結晶性二氧化鈦薄膜……………… 6
1.6 研究目的……………………………………………… 7

第二章 研究材料與方法 ………………………… 9
2.1 儀器與試劑…………………………………………… 9
2.2 二氧化鈦薄膜製備…………………………………… 10
2.3 材料表面性質分析…………………………………… 11
2.3.1 表面形貌分析 …………………………………… 11
2.3.2 薄膜厚度分析 …………………………………… 12
2.3.3 晶相結構鑑定 …………………………………… 12
2.3.4 表面自由能量測 ………………………………… 13
2.3.5 介電常數計算 …………………………………… 15
2.4 凝血試驗分析………………………………………… 16
2.4.1 全血凝固試驗 …………………………………… 17
2.4.2 接觸活化第12凝血因子試驗 ………………… 18
2.4.3 纖維蛋白酶原吸附量測 ………………………… 19
2.4.4 纖維蛋白貼附觀察 ……………………………… 19
2.4.5 血小板貼附試驗 ………………………………… 20

第三章 結果 ……………………………………… 23
3.1 二氧化鈦薄膜製備…………………………………… 23
3.2 材料表面性質分析…………………………………… 23
3.2.1 表面形貌分析 …………………………………… 23
3.2.2 薄膜厚度分析 …………………………………… 23
3.2.3 晶相結構鑑定 …………………………………… 24
3.2.4 表面自由能量測 ………………………………… 24
3.2.5 介電常數計算 …………………………………… 25
3.3凝血試驗分析………………………………………… 26
3.3.1 全血凝固試驗 …………………………………… 26
3.3.2 接觸活化第12凝血因子試驗 ………………… 26
3.3.3 纖維蛋白酶原吸附量測 ………………………… 27
3.3.4 纖維蛋白貼附觀察 ……………………………… 28
3.3.5 血小板貼附試驗 ………………………………… 28

第四章 討論 …………………………………… 30
4.1 二氧化鈦之相變化與電性的關係………………… 30
4.2 材料表面電性與凝血作用的關係………………… 32
4.2.1表面電性對蛋白吸附的影響 …………………… 32
4.2.2材料表面蛋白吸附對凝血作用的影響 ………… 34
4.2.3 高介電常數材料表面對第12凝血因子接觸活化作用的影響 36
4.2.4 高介電常數材料表面對血小板貼附的影響 ……… 36

第五章 結論 …………………………………… 38

第六章 未來方向 ……………………………… 39

參考文獻 ……………………………………………… 41
附表 …………………………………………………… 45
附圖 …………………………………………………… 48
Abrahamsson I, Zitzmann NU, Berglundh T, Wennerberg A, Lindhe J. Bone and soft tissue integration to titanium implants with different surface topography: an experimental study in the dog. J Oral & Maxi Imp 2001;16:323-332.
Albertin KF, Alayo MI, Fantini MCA, Pereyra I. Study of annealed TiOx for MOS capacitors. LNLS 2007 Activity Report.
Amarnath LP, Srinivas A, Ramamurthi A. In vitro hemocompatibility testing of UV-modified hyaluronan hydrogels. Biomaterials 2006;27:1416-1424.
Andrade JD and Hlady V. Plasma protein adsorption: the big twelve. Ann NY Acad Sci 1987;516:158-172.
Assad M, Lemieux N, Rivard CH, Yahia LH. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation. Bio-Med Mater & Eng 1999;9:1-12.
Cheng X and Roscae SG. Corrosion behaviour of titanium in the presence of calcium phosphate and serum proteins. Biomaterials 2005;26:7350-7356.
Colman RW. Biologic activities of the contact factors in vivo-potentiation of hypotension, inflammation, and fibrinolysis. Thromb Haemost 1999;82:1568-1577.
Colman RW and Schmaier AH. Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood 1997;90:3819-3843.
Daiko Y, Kasuga T, Nogami M. Proton conduction and pore structure in sol-gel glasses. Chem Mater 2002;14:4624-4627.
Dee KC, Puleo DA, Bizios R. An introduction to tissue-biomaterial interactions. Chichester: John Wiley & Sons;2002.
Djaoued Y, Badilescu S, Ashrit PV, Bersani D, Lottici PP, Robichaud J. Study of anatase to rutile phase transition in nanocrystalline titania films. J Sol-Gel Sci Tech 2002;24:255-264.
Diebold U. The surface science of titanium dioxide. Surface Science Report 2003;48:53-229.
Eder D, Kinloch IA, Windle AH. Pure rutile nanotubes. Chem Commun 2006;13:1448-1450.
Eriksson C, Nygren H, Ohlson K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials 2004;25:4759-4766.
Fan O, McQuillin B, Ray AK, Turner ML, Seddon AB. High density, non-porous anatase titania thin films for device applications. J Phys D: Appl Phys 2000;33:2683-2686.
Gemmell C and Park J. Initial blood interactions with endosseous implant materials. Bone engineering 2000, Davies J, ed. Toronto: em squared incorporated, p.108-117.
de Gennes PG. Wetting: static and dynamics. Rev. Mod. Phys. 1985;57:827-863.
Grunkemeier JM, Tsai WB, Horbett TA. Hemocompatibility of treated polystyrene substrates: contact activation, platelet adhesion, and procoagulant activity of adherent platelets. J Biomed Mater Res 1998;41:657-670.
Guo Z, Bussard KM, Chatterjee K, Miller R, Vogler EA, Siedlecki CA. Mathematical modeling of material-induced blood plasma coagulation. Biomaterials 2006;27:796-806.
Helsen JA and Breme HJ. Metals as Biomaterials. Chichester: John Wiley & Sons;1998.
Hong J, Andersson J, Ekdahl KN. Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis. Thromb Haemost 1999;82:58-64.
Howlett CR, Zreiqat H, Wu Y, McFall DW, McKenzie DR. Effect of ion modification of commonly used orthopedic materials on the attachment of human bone-derived cell. J Biomed Mater Res 1999;10:199-216.
Huang N, Chen YR, Luo JM, Yi J, Lu R. In vitro investigation of blood compatibility of Ti with oxide layers of rutile structure. J Biomat Appl 1994;8:404-412.
Huang N, Yang P, Cheng X, Leng Y, Zheng X, Cai G, Zhen Z, Zhang F, Chen Y, Liu X, Xi T. Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. Biomaterials 1998;19:771-776.
Hurbett TA, Ratner BD, Schakenraad JM, Schoen FJ. Some background concept. In Ratner B, Hoffman A, Schoen F, Limons J, editors. Biomaterials science: An introduction to materials in medicine. New York: Academic Press 1996:133-164.
Katz JL, Orthopedic applications. In “Biomaterials Science – An introduction to materials in medicine” Buddy DR ed, Academic Press, San Diego, 1996;p.335-370.
Kim JY, Jung HS, No JH, Kim JR, Hong KS. Influence of anatase-rutile phase transformation on dielectric properties of sol-gel derived TiO2 thin films. J Electroceram 2006;16:447-451.
Kim TI, Han JH, Lee IS, Lee KH, Shin MC Choi BB. New titanium alloys for biomaterials: a study of mechanical and corrosion properties and cytotoxicity. Bio-Med Mater & Eng 1997;7:253-263.
Lee JH, Lee SJ, Khang G, Lee HB. The effect of fluid shear stress on endothelial cell adhesiveness to polymer surfaces with wettability gradient. J Colloid and Interface Science 2000;230:83-90.
Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ, Koak JY. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004;25:2867-2875.
Long M and Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials 1998;19:1621-1639.
Maitz MF, Pham MT, Wieser E, Tsyganov I. Blood compatibility of titanium oxides with various crystal structure and element dopin. J Biomat App 2003;17:303-319.
Mitropoulos KA. High affinity binding of factor XII to an electronegative surface controls the rates of factor XII and prekallikrein activation in vitro. Thromb Res 1999;94:117-129.
Mittal KL, Anderson HR, Ross S. Acid-base interactions: relevance to adhesion science and technology. Jr. VSP Utrecht 1991.
Morais S, Sousa JP, Fernandes MH, Carvalho GS. In vitro biomineralization by osteoblast-like cells I. Retardation of tissue mineralization by metal salts. Biomaterials 1998;19:13-21.
Naik VM, Haddad D, Naik R, Benci J, Auner GW. Optical properties of rutile and anatase phases of TiO2 thin films grown at room temperature by RF magnetron sputtering. Mat Res Soc Symp 2003;755:1-6.
Park BH, Li LS, Gibbons BJ, Huang JY, Jia QX. Photovoltaic response and dielectric properties of epitaxial anatase-TiO2 films grown on conductive electrodes. Appl Phys Let 2001;79:2797-2799.
Pouilleau J, Devilliers D, Garrido F, Durand-vidal S, Mahe E. Structure and composition of passive titanium oxide films. Mater Sci Eng 1997;B47:235-243.
Rodrigues SN, Gonçalves IC, Martins MCL, Barbosa MA, Ratner BD. Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials 2006;27:5357-5367.
Roy SC, Paulose M, Grimes CA. The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials 2007;28:4667-4672.
Saito H. The contact phase of blood coagulation. In:Bloom AL, Forbes CD, Thomas DP, Tuddenham EGD, editors. Haemostasis and thrombosis. 3rd ed. Edinburgh: Churchill Livingstone; 1994. 289-307.
Sharma CP and Sunny MC. Titanium oxide layer thickness and protein interaction at the interface. Trend Biomater Artif Org 1986;1:1-8.
Stamate M, Lazar G, Lazar I. Anatase-rutile TiO2 thin films deposited in a D.C. magnetron sputtering system. Romani J Phys 2008;53:217-221.
Strietzel R, Hösch A, Kalbfleisch H, Buch D. In vitro corrosion of titanium. Biomaterials 1998;19:1495-1499.
Sugimoto T and Omata M. Internal medicine, Ver. 6, Asakura Shoten, Tokyo, Japan, 1995; p. 2004.
Sunny MC and Sharma CP. Titanium-protein interaction: changes with oxide layer thickness. J Biomater Appl 1991;6:89-98.
Voitik AJ. Adjustment-free delivery of an immediate, transitional prosthesis. J Dent Tech 1996;13:27-31.
Volpe CD, Siboni S, Maniglio D, Morra M, Cassinelli C, Anderle M, Speranza G, Canteri R, Pederzolli C, Gottardi F, Janikowska S. Recent theoretical and experimental advancements in the application of good-van oss acid-base theory to the analysis of polymer surfaces. J Adhe Sci Tech 2003;17:1425-1456.
Vroman L, Adams AL, Klings M. Interactions among human blood proteins at interfaces. Fed Proc 1971;30:1494-1502.
Walivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P. Titanium with different oxides: in vitro studies of protein adsorption and contact activation. Biomaterials 1994;15:827-834.
Young T. An essay on the cohesion of fluids. Phil Trans R Soc Lond 1805;95:65-87.
Zhang M, Wu Y, Hauch K, Horbett TA. Fibrinogen and von willebrand factor mediated platelet adhesion to polystyrene under flow conditions. Journal of biomaterials science 2008;19:1383-1410.
Zhuo R, Miller R, Bussard KM, Siedlecki CA, Vogler EA. Procoagulant stimulus processing by the intrinsic pathway of blood plasma coagulation. Biomaterials 2005;26:2965-2973.
Zhuo R, Siedlecki CH, Vogler EA. Autoactivation of blood factor XII at hydrophilic and hydrophobic surfaces. Biomaterials 2006;27:4325-4332.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊