跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王禎麟
研究生(外文):Chen-Lin Wang
論文名稱:探討酵母菌蛋白Cdc13其SUMO化修飾在端粒機制上所扮演的角色
論文名稱(外文):Investigating the role of Cdc13p sumoylation on telomere function
指導教授:林敬哲林敬哲引用關係
指導教授(外文):Jing-Jer Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:46
中文關鍵詞:端粒SUMOCdc13
外文關鍵詞:telomeresumocdc13
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
端粒(telomere)位於真核生物染色體末端,對於染色體的維持十分重要,在先前的研究顯示,小泛素修飾蛋白連接酶(SUMO E3 ligase)會影響端粒的機制,顯示細胞可能會藉由SUMO修飾端粒結合蛋白,影響蛋白功能來達到對端粒的調控,因此我們想要尋找可能受到SUMO修飾的端粒蛋白。SUMO修飾的蛋白質具有特定的共同序列,而Cdc13p具有兩個此特定序列,Cdc13p為必要的端粒結合蛋白,與許多端粒相關蛋白交互作用,並調控與維持端粒機制。利用純化的Cdc13p、Smt3p (SUMO)、E1及E2蛋白進行SUMO修飾反應,得知Cdc13p在in vitro 情況下會受到SUMO修飾。此外,利用親和性方式抓取在細胞大量表現的Smt3p-6His以偵測Cdc13p訊號,發現在in vivo時,Cdc13p亦會受到SUMO修飾。為了更加釐清此修飾對Cdc13p造成的影響,我將Cdc13p可能受到SUMO修飾的胺基酸進行點突變,利用in vivo及in vitro方式偵測,發現突變的cdc13p K909R、cdc13p K702R K909R 無法受到SUMO修飾,進而確定在Cdc13p中,K909為其SUMO修飾位。進一步觀察發現,分別表現此兩種突變蛋白的細胞,其端粒長度有些許延長的現象,而Cdc13p維持細胞存活的主要的功能、細胞內Cdc13p的含量及端粒位置效應並未受到改變。由以上結果得知,SUMO修飾會藉由調控端粒結合蛋白Cdc13p來影響端粒功能,顯示出SUMO修飾影響端粒功能的重要性。
Telomeres are specialized protein-DNA complexes at the end of eukaryotic chromosomes that play essential role in maintaining chromosome integrity. Protein factors that participate in telomere regulation and maintenance have been identified. They affect telomere function through their direct binding to telomeres, associate with telomere-binding proteins, or protein modifications. In Saccharomyces cerevisiae, both NFI1 and SIZ1 are involved in the last step of SUMO modification on proteins. We found that deletion of these two genes, nfi1Δ siz1Δ, caused longer telomeres, suggesting that SUMO modification might have an effect on telomeres. Interestingly, sequence analysis of telomere-binding protein, Cdc13p, revealed two putative sumoylation sites. Using purified E1, E2, and SUMO (Smt3p) in a SUMO modification assay, we found Cdc13p could be SUMO modified in vitro. Moreover, by pulling down SUMO with 6His Tag through Nickel-affinity chromatography, we also found that Cdc13p can be sumoylated in vivo. Furthermore, using site-specific mutagenesis to change the putative SUMO modification sites on Cdc13p, we found that the telomere lengths were affected in cells expressing these mutants. Thus, our results provide the first indication of SUMO modification on telomere binding protein Cdc13p and that SUMO modification might be a novel mechanism to regulate telomere functions.
論文電子檔著作權授權書…………………………………………… i
論文審定同意書…………………………………………………… ii
誌謝………………………………………………………………… iii
中文摘要…………………………………………………………… iv
英文摘要……………………………………………………………. v
目錄………………………………………………………………… vi
圖目錄……………………………………………………………… vii
緒論……………………………………………………………………… 1
材料方法………………………………………………………………… 7
實驗結果……………………………………………………………… 19
討論…………………………………………………………………… 25
參考文獻……………………………………………………………… 29
附圖表……………………………………………………………… 36
Anderson, E.M., Halsey, W.A., and Wuttke, D.S. (2002). Delineation of the high-affinity single-stranded telomeric DNA-binding domain of Saccharomyces cerevisiae Cdc13. Nucleic Acids Res 30, 4305-4313.

Aparicio, O.M., Billington, B.L., and Gottschling, D.E. (1991). Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279-1287.

Askree, S.H., Yehuda, T., Smolikov, S., Gurevich, R., Hawk, J., Coker, C., Krauskopf, A., Kupiec, M., and McEachern, M.J. (2004). A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 101, 8658-8663.

Blackburn, E.H. (1990). Telomeres: structure and synthesis. J Biol Chem 265, 5919-5921.

Boulton, S.J., and Jackson, S.P. (1996a). Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res 24, 4639-4648.

Boulton, S.J., and Jackson, S.P. (1996b). Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15, 5093-5103.

Bourns, B.D., Alexander, M.K., Smith, A.M., and Zakian, V.A. (1998). Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol Cell Biol 18, 5600-5608.

Bylebyl, G.R., Belichenko, I., and Johnson, E.S. (2003). The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278, 44113-44120.

Chandra, A., Hughes, T.R., Nugent, C.I., and Lundblad, V. (2001). Cdc13 both positively and negatively regulates telomere replication. Genes Dev 15, 404-414.

Chen, X.L., Silver, H.R., Xiong, L., Belichenko, I., Adegite, C., and Johnson, E.S. (2007). Topoisomerase I-dependent viability loss in saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair. Genetics 177, 17-30.

Conrad, M.N., Wright, J.H., Wolf, A.J., and Zakian, V.A. (1990). RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739-750.

Desterro, J.M., Rodriguez, M.S., and Hay, R.T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2, 233-239.

Evans, S.K., and Lundblad, V. (1999). Est1 and Cdc13 as comediators of telomerase access. Science 286, 117-120.

Garvik, B., Carson, M., and Hartwell, L. (1995). Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15, 6128-6138.

Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18, 2046-2059.

Gottschling, D.E., Aparicio, O.M., Billington, B.L., and Zakian, V.A. (1990). Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751-762.

Greider, C.W., and Blackburn, E.H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405-413.

Hannich, J.T., Lewis, A., Kroetz, M.B., Li, S.J., Heide, H., Emili, A., and Hochstrasser, M. (2005). Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280, 4102-4110.

Hardeland, U., Steinacher, R., Jiricny, J., and Schar, P. (2002). Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J 21, 1456-1464.

Hardy, C.F., Sussel, L., and Shore, D. (1992). A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6, 801-814.

Hietakangas, V., Anckar, J., Blomster, H.A., Fujimoto, M., Palvimo, J.J., Nakai, A., and Sistonen, L. (2006). PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci U S A 103, 45-50.

Hsu, C.L., Chen, Y.S., Tsai, S.Y., Tu, P.J., Wang, M.J., and Lin, J.J. (2004). Interaction of Saccharomyces Cdc13p with Pol1p, Imp4p, Sir4p and Zds2p is involved in telomere replication, telomere maintenance and cell growth control. Nucleic Acids Res 32, 511-521.

Hughes, T.R., Weilbaecher, R.G., Walterscheid, M., and Lundblad, V. (2000). Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Proc Natl Acad Sci U S A 97, 6457-6462.

Johnson, E.S. (2004). Protein modification by SUMO. Annu Rev Biochem 73, 355-382.

Johnson, E.S., and Blobel, G. (1997). Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272, 26799-26802.

Johnson, E.S., and Gupta, A.A. (2001). An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735-744.

Joseph, J., Tan, S.H., Karpova, T.S., McNally, J.G., and Dasso, M. (2002). SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol 156, 595-602.

Klenk, C., Humrich, J., Quitterer, U., and Lohse, M.J. (2006). SUMO-1 controls the protein stability and the biological function of phosducin. J Biol Chem 281, 8357-8364.

Larrivee, M., LeBel, C., and Wellinger, R.J. (2004). The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev 18, 1391-1396.

Lendvay, T.S., Morris, D.K., Sah, J., Balasubramanian, B., and Lundblad, V. (1996). Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144, 1399-1412.

Li, S., Makovets, S., Matsuguchi, T., Blethrow, J.D., Shokat, K.M., and Blackburn, E.H. (2009). Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell 136, 50-61.

Li, W., Hesabi, B., Babbo, A., Pacione, C., Liu, J., Chen, D.J., Nickoloff, J.A., and Shen, Z. (2000). Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic Acids Res 28, 1145-1153.

Lin, J.J., and Zakian, V.A. (1994). Isolation and characterization of two Saccharomyces cerevisiae genes that encode proteins that bind to (TG1-3)n single strand telomeric DNA in vitro. Nucleic Acids Res 22, 4906-4913.

Lin, J.J., and Zakian, V.A. (1996). The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci U S A 93, 13760-13765.

Lin, Y.C., Hsu, C.L., Shih, J.W., and Lin, J.J. (2001). Specific binding of single-stranded telomeric DNA by Cdc13p of Saccharomyces cerevisiae. J Biol Chem 276, 24588-24593.

Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T.R. (1997). Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561-567.

Lydall, D., and Weinert, T. (1995). Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270, 1488-1491.

Minty, A., Dumont, X., Kaghad, M., and Caput, D. (2000). Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275, 36316-36323.

Moretti, P., Freeman, K., Coodly, L., and Shore, D. (1994). Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev 8, 2257-2269.

Mumberg, D., Muller, R., and Funk, M. (1994). Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22, 5767-5768.

Nugent, C.I., Hughes, T.R., Lue, N.F., and Lundblad, V. (1996). Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249-252.

Potts, P.R., and Yu, H. (2007). The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol 14, 581-590.

Prowse, K.R., and Greider, C.W. (1995). Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci U S A 92, 4818-4822.

Qi, H., and Zakian, V.A. (2000). The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev 14, 1777-1788.

Rogan, E.M., Bryan, T.M., Hukku, B., Maclean, K., Chang, A.C., Moy, E.L., Englezou, A., Warneford, S.G., Dalla-Pozza, L., and Reddel, R.R. (1995). Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalization of Li-Fraumeni syndrome fibroblasts. Mol Cell Biol 15, 4745-4753.

Sandell, L.L., and Zakian, V.A. (1993). Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729-739.

Seufert, W., Futcher, B., and Jentsch, S. (1995). Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373, 78-81.

Shen, Z., Pardington-Purtymun, P.E., Comeaux, J.C., Moyzis, R.K., and Chen, D.J. (1996a). Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics 37, 183-186.

Shen, Z., Pardington-Purtymun, P.E., Comeaux, J.C., Moyzis, R.K., and Chen, D.J. (1996b). UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36, 271-279.

Smith, J.R., and Pereira-Smith, O.M. (1996). Replicative senescence: implications for in vivo aging and tumor suppression. Science 273, 63-67.

Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G., and Chen, Y. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101, 14373-14378.

Spink, K., Ho, J.C., Tanaka, K., Watts, F.Z., and Chambers, A. (2005). The telomere-binding protein Taz1p as a target for modification by a SUMO-1 homologue in fission yeast. Biochem Genet 43, 103-117.

Tatham, M.H., Jaffray, E., Vaughan, O.A., Desterro, J.M., Botting, C.H., Naismith, J.H., and Hay, R.T. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276, 35368-35374.

Tseng, S.F., Lin, J.J., and Teng, S.C. (2006). The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation. Nucleic Acids Res 34, 6327-6336.

Tseng, S.F., Shen, Z.J., Tsai, H.J., Lin, Y.H., and Teng, S.C. (2009). Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13. Nucleic Acids Res.

Tsukamoto, Y., Kato, J., and Ikeda, H. (1997). Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388, 900-903.

Ungar, L., Yosef, N., Sela, Y., Sharan, R., Ruppin, E., and Kupiec, M. (2009). A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res.

Wang, M.J., Lin, Y.C., Pang, T.L., Lee, J.M., Chou, C.C., and Lin, J.J. (2000). Telomere-binding and Stn1p-interacting activities are required for the essential function of Saccharomyces cerevisiae Cdc13p. Nucleic Acids Res 28, 4733-4741.

Watson, J.D. (1972). Origin of concatemeric T7 DNA. Nat New Biol 239, 197-201.

Wellinger, R.J., Wolf, A.J., and Zakian, V.A. (1993a). Origin activation and formation of single-strand TG1-3 tails occur sequentially in late S phase on a yeast linear plasmid. Mol Cell Biol 13, 4057-4065.

Wellinger, R.J., Wolf, A.J., and Zakian, V.A. (1993b). Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell 72, 51-60.

Wotton, D., and Shore, D. (1997). A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11, 748-760.

Xhemalce, B., Seeler, J.S., Thon, G., Dejean, A., and Arcangioli, B. (2004). Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J 23, 3844-3853.

Yeager, T.R., Neumann, A.A., Englezou, A., Huschtscha, L.I., Noble, J.R., and Reddel, R.R. (1999). Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59, 4175-4179.

Zakian, V.A. (1995). Telomeres: beginning to understand the end. Science 270, 1601-1607.

Zhao, X., and Blobel, G. (2005). A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci U S A 102, 4777-4782.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top