跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/30 00:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:溫晴雅
研究生(外文):Ching-Ya Wen
論文名稱:抑制著色性乾皮症蛋白質C表現藉提高氧化壓力增加人類惡性腦膠質母細胞對三氧化二砷之敏感性
論文名稱(外文):Silencing Xeroderma Pigmentosum Group C Protein Mediates through Augmentation of Oxidative Stress to Sensitize Human Glioblastoma U87 Cells to Arsenic Trioxide
指導教授:李德章李德章引用關係
指導教授(外文):Te-Chang Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:70
中文關鍵詞:著色性乾皮症蛋白質C三氧化二砷氧化壓力人類惡性腦膠質母細胞
外文關鍵詞:xeroderma pigmentosum group C proteinarsenic trioxideglioblastomaoxidative Stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
三氧化二砷(ATO)已獲得FDA核准,用於治療急性前骨髓細胞白血病(acute promyelocytic leukemia, APL),而在其他癌症的前臨床實驗中,三氧化二砷也具有良好的抑制效果,但在實際應用上仍受限制。許多研究顯示,在細胞代謝砷的過程中產生自由基,造成氧化壓力上升及DNA傷害,導致細胞死亡,因此本研究想藉由降低DNA修復分子的表現,是否能提高三氧化二砷的細胞毒性。Xeroderma pigmentosum group C (XPC)為核苷酸切除修復(nucleotide excision repair, NER)路徑中辨認DNA損害的分子,並且參與氧化性DNA傷害修復,近年更發現XPC與氧化壓力有關。本研究發現降低人類惡性腦膠質母細胞株U87細胞XPC表現量,增加三氧化二砷引起的細胞自噬和細胞老衰現象。降低XPC表現量亦會增加三氧化二砷造成之DNA傷害,但並未影響細胞辨認三氧化二砷造成之DNA傷害。抑制XPC表現增加三氧化二砷引起的氧化壓力上升以及細胞中過氧化態蛋白質表現量peroxiredoxin-SO3 (Prx-SO3),以及提高對氧化壓力敏感的轉錄因子activator protein 1 (AP-1)、nuclear factor-kB (NF-kB)、serum response element (SRE)轉錄活性。以上結果顯示缺乏XPC會改變細胞內氧化還原狀態,並且可能是導致U87細胞對三氧化二砷敏感度增高的原因。
Arsenic trioxde (ATO) has been approved as an effective drug against acute promyelocytic leukemia (APL). The therapeutic application of ATO toward other cancers, including solid tumors, is potentially promising, but still limited. Numerous studies have shown that ATO treatment induces intracellular oxidative stress and DNA damage, and subsequently triggers cell death in a variety of cancer cell types. This study aims to understand whether the therapeutic activity of ATO could be ameliorated by attenuating the DNA repair activity. Xeroderma pigmentosum group C (XPC) protein, a member participating in nucleotide excision repair pathway, is required for recognizing DNA adducts, and associated with oxidative DNA repair. In addition, emerging studies have shown that XPC is involved in response to oxidative stress. In this study, we demonstrated that XPC silencing sensitizes human glioblastoma U87 cells to ATO mediated through increased frequencies of senescence and autophagy as compared to siRNA control cells. The present results also showed that XPC silencing enhances ATO-induced DNA damage in U87 cells, but not interfere with the repair of ATO-induced DNA damage. Alternatively, XPC silencing augmented ATO-induced oxidative stress, the hyperoxidation level of peroxiredoxin, as well as the activities of ROS responsible transcription factors activities, such as activator protein 1 (AP-1), nuclear factor-kB (NFkB), serum response element (SRE). These results implicate that XPC silencing modulates cellular redox environment, which may result in increased susceptibility to ATO.
中文摘要 ………………………………………………………………1
英文摘要 ………………………………………………………………2
第一章 緒論 …………………………………………………………3
第二章 材料與方法 …………………………………………………12
第三章 結果 …………………………………………………………21
第四章 討論 …………………………………………………………30
第五章 總結與未來展望……………………………………………36
參考文獻 ………………………………………………………………37
圖表 ……………………………………………………………………47
附錄 ……………………………………………………………………64
Aggarwal, B.B. (2004). Nuclear factor-kappaB: the enemy within. Cancer Cell 6, 203-208.
Andrew, A.S., Karagas, M.R., and Hamilton, J.W. (2003). Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water. Int J Cancer 104, 263-268.
Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y., and Hanaoka, F. (2001). Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem 276, 18665-18672.
Bau, D.T., Wang, T.S., Chung, C.H., Wang, A.S., and Jan, K.Y. (2002). Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite. Environ Health Perspect 110 Suppl 5, 753-756.
Biard, D.S. (2007). Untangling the relationships between DNA repair pathways by silencing more than 20 DNA repair genes in human stable clones. Nucleic Acids Res 35, 3535-3550.
Bootsma, D. (2001). The "Dutch DNA Repair Group", in retrospect. Mutat Res 485, 37-41.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
Brooks, P.J., Wise, D.S., Berry, D.A., Kosmoski, J.V., Smerdon, M.J., Somers, R.L., Mackie, H., Spoonde, A.Y., Ackerman, E.J., Coleman, K., et al. (2000). The oxidative DNA lesion 8,5'-(S)-cyclo-2'-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem 275, 22355-22362.
Bunick, C.G., Miller, M.R., Fuller, B.E., Fanning, E., and Chazin, W.J. (2006). Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry 45, 14965-14979.
Burnette, W.N. (1981). "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112, 195-203.
Chen, C.J., Chen, C.W., Wu, M.M., and Kuo, T.L. (1992). Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66, 888-892.
Chen, Z., Yang, J., Wang, G., Song, B., Li, J., and Xu, Z. (2007). Attenuated expression of xeroderma pigmentosum group C is associated with critical events in human bladder cancer carcinogenesis and progression. Cancer Res 67, 4578-4585.
Cheo, D.L., Ruven, H.J., Meira, L.B., Hammer, R.E., Burns, D.K., Tappe, N.J., van Zeeland, A.A., Mullenders, L.H., and Friedberg, E.C. (1997). Characterization of defective nucleotide excision repair in XPC mutant mice. Mutat Res 374, 1-9.
Cohen, M.H., Hirschfeld, S., Flamm Honig, S., Ibrahim, A., Johnson, J.R., O'Leary, J.J., White, R.M., Williams, G.A., and Pazdur, R. (2001). Drug approval summaries: arsenic trioxide, tamoxifen citrate, anastrazole, paclitaxel, bexarotene. Oncologist 6, 4-11.
Corsini, E., Asti, L., Viviani, B., Marinovich, M., and Galli, C.L. (1999). Sodium arsenate induces overproduction of interleukin-1alpha in murine keratinocytes: role of mitochondria. J Invest Dermatol 113, 760-765.
D'Errico, M., Parlanti, E., Teson, M., de Jesus, B.M., Degan, P., Calcagnile, A., Jaruga, P., Bjoras, M., Crescenzi, M., Pedrini, A.M., et al. (2006). New functions of XPC in the protection of human skin cells from oxidative damage. EMBO J 25, 4305-4315.
Damrot, J., Helbig, L., Roos, W.P., Barrantes, S.Q., Kaina, B., and Fritz, G. (2009). DNA replication arrest in response to genotoxic stress provokes early activation of stress-activated protein kinases (SAPK/JNK). J Mol Biol 385, 1409-1421.
Darzynkiewicz, Z., Juan, G., Li, X., Gorczyca, W., Murakami, T., and Traganos, F. (1997). Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27, 1-20.
Despras, E., Pfeiffer, P., Salles, B., Calsou, P., Kuhfittig-Kulle, S., Angulo, J.F., and Biard, D.S. (2007). Long-term XPC silencing reduces DNA double-strand break repair. Cancer Res 67, 2526-2534.
Dilda, P.J., and Hogg, P.J. (2007). Arsenical-based cancer drugs. Cancer Treat Rev 33, 542-564.
Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367.
Douer, D., and Tallman, M.S. (2005). Arsenic trioxide: new clinical experience with an old medication in hematologic malignancies. J Clin Oncol 23, 2396-2410.
Flora, S.J. (1999). Arsenic-induced oxidative stress and its reversibility following combined administration of N-acetylcysteine and meso 2,3-dimercaptosuccinic acid in rats. Clin Exp Pharmacol Physiol 26, 865-869.
Frechet, M., Warrick, E., Vioux, C., Chevallier, O., Spatz, A., Benhamou, S., Sarasin, A., Bernerd, F., and Magnaldo, T. (2008). Overexpression of matrix metalloproteinase 1 in dermal fibroblasts from DNA repair-deficient/cancer-prone xeroderma pigmentosum group C patients. Oncogene 27, 5223-5232.
Gurr, J.R., Liu, F., Lynn, S., and Jan, K.Y. (1998). Calcium-dependent nitric oxide production is involved in arsenite-induced micronuclei. Mutat Res 416, 137-148.
Hartwig, A., Groblinghoff, U.D., Beyersmann, D., Natarajan, A.T., Filon, R., and Mullenders, L.H. (1997). Interaction of arsenic(III) with nucleotide excision repair in UV-irradiated human fibroblasts. Carcinogenesis 18, 399-405.
Hei, T.K., Liu, S.X., and Waldren, C. (1998). Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci U S A 95, 8103-8107.
Hollander, M.C., Philburn, R.T., Patterson, A.D., Velasco-Miguel, S., Friedberg, E.C., Linnoila, R.I., and Fornace, A.J., Jr. (2005). Deletion of XPC leads to lung tumors in mice and is associated with early events in human lung carcinogenesis. Proc Natl Acad Sci U S A 102, 13200-13205.
Huang, S., Huang, C.F., and Lee, T. (2000). Induction of mitosis-mediated apoptosis by sodium arsenite in HeLa S3 cells. Biochem Pharmacol 60, 771-780.
Kanzawa, T., Zhang, L., Xiao, L., Germano, I.M., Kondo, Y., and Kondo, S. (2005). Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24, 980-991.
Kassam, S.N., and Rainbow, A.J. (2007). Deficient base excision repair of oxidative DNA damage induced by methylene blue plus visible light in xeroderma pigmentosum group C fibroblasts. Biochem Biophys Res Commun 359, 1004-1009.
Kim, J.H., Shin, J.H., and Kim, I.H. (2004). Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor. Int J Radiat Oncol Biol Phys 59, 1174-1180.
Kitchin, K.T., and Wallace, K. (2008). The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity. J Inorg Biochem 102, 532-539.
Kozlovsky, N., Rudich, A., Potashnik, R., Ebina, Y., Murakami, T., and Bashan, N. (1997). Transcriptional activation of the Glut1 gene in response to oxidative stress in L6 myotubes. J Biol Chem 272, 33367-33372.
Kraemer, K.H., Lee, M.M., and Scotto, J. (1984). DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. Carcinogenesis 5, 511-514.
Kraemer, K.H., Lee, M.M., and Scotto, J. (1987). Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol 123, 241-250.
Krishna, M., and Narang, H. (2008). The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65, 3525-3544.
Lee, K.W., and Lee, H.J. (2006). The roles of polyphenols in cancer chemoprevention. Biofactors 26, 105-121.
Lee, T.C., and Ho, I.C. (1995). Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol 69, 498-504.
Lefranc, F., Facchini, V., and Kiss, R. (2007). Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist 12, 1395-1403.
Legerski, R.J., Liu, P., Li, L., Peterson, C.A., Zhao, Y., Leach, R.J., Naylor, S.L., and Siciliano, M.J. (1994). Assignment of xeroderma pigmentosum group C (XPC) gene to chromosome 3p25. Genomics 21, 266-269.
Li, J.H., and Rossman, T.G. (1989). Inhibition of DNA ligase activity by arsenite: a possible mechanism of its comutagenesis. Mol Toxicol 2, 1-9.
Long, J., Manchandia, T., Ban, K., Gao, S., Miller, C., and Chandra, J. (2007). Adaphostin cytoxicity in glioblastoma cells is ROS-dependent and is accompanied by upregulation of heme oxygenase-1. Cancer Chemother Pharmacol 59, 527-535.
Lovejoy, C.A., Lock, K., Yenamandra, A., and Cortez, D. (2006). DDB1 maintains genome integrity through regulation of Cdt1. Mol Cell Biol 26, 7977-7990.
Lynn, S., Gurr, J.R., Lai, H.T., and Jan, K.Y. (2000). NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86, 514-519.
Maeda, H., Hori, S., Nishitoh, H., Ichijo, H., Ogawa, O., Kakehi, Y., and Kakizuka, A. (2001). Tumor growth inhibition by arsenic trioxide (As2O3) in the orthotopic metastasis model of androgen-independent prostate cancer. Cancer Res 61, 5432-5440.
Maiti, S., and Chatterjee, A.K. (2001). Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency. Arch Toxicol 75, 531-537.
Marin, M.S., Lopez-Cima, M.F., Garcia-Castro, L., Pascual, T., Marron, M.G., and Tardon, A. (2004). Poly (AT) polymorphism in intron 11 of the XPC DNA repair gene enhances the risk of lung cancer. Cancer Epidemiol Biomarkers Prev 13, 1788-1793.
Marini, F., Nardo, T., Giannattasio, M., Minuzzo, M., Stefanini, M., Plevani, P., and Muzi Falconi, M. (2006). DNA nucleotide excision repair-dependent signaling to checkpoint activation. Proc Natl Acad Sci U S A 103, 17325-17330.
Marti, T.M., Hefner, E., Feeney, L., Natale, V., and Cleaver, J.E. (2006). H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc Natl Acad Sci U S A 103, 9891-9896.
Masutani, C., Sugasawa, K., Yanagisawa, J., Sonoyama, T., Ui, M., Enomoto, T., Takio, K., Tanaka, K., van der Spek, P.J., Bootsma, D., et al. (1994). Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J 13, 1831-1843.
Matsui, M., Nishigori, C., Toyokuni, S., Takada, J., Akaboshi, M., Ishikawa, M., Imamura, S., and Miyachi, Y. (1999). The role of oxidative DNA damage in human arsenic carcinogenesis: detection of 8-hydroxy-2'-deoxyguanosine in arsenic-related Bowen's disease. J Invest Dermatol 113, 26-31.
McCubrey, J.A., Steelman, L.S., Abrams, S.L., Bertrand, F.E., Ludwig, D.E., Basecke, J., Libra, M., Stivala, F., Milella, M., Tafuri, A., et al. (2008). Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 22, 708-722.
McCubrey, J.A., Steelman, L.S., Abrams, S.L., Lee, J.T., Chang, F., Bertrand, F.E., Navolanic, P.M., Terrian, D.M., Franklin, R.A., D'Assoro, A.B., et al. (2006). Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 46, 249-279.
Melis, J.P., Wijnhoven, S.W., Beems, R.B., Roodbergen, M., van den Berg, J., Moon, H., Friedberg, E., van der Horst, G.T., Hoeijmakers, J.H., Vijg, J., et al. (2008). Mouse models for xeroderma pigmentosum group A and group C show divergent cancer phenotypes. Cancer Res 68, 1347-1353.
Miao, F., Bouziane, M., Dammann, R., Masutani, C., Hanaoka, F., Pfeifer, G., and O'Connor, T.R. (2000). 3-Methyladenine-DNA glycosylase (MPG protein) interacts with human RAD23 proteins. J Biol Chem 275, 28433-28438.
Miller, W.H., Jr., Schipper, H.M., Lee, J.S., Singer, J., and Waxman, S. (2002). Mechanisms of action of arsenic trioxide. Cancer Res 62, 3893-3903.
Murgo, A.J. (2001). Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute Cooperative Research and Development Studies. Oncologist 6 Suppl 2, 22-28.
Ng, J.C., Wang, J., and Shraim, A. (2003). A global health problem caused by arsenic from natural sources. Chemosphere 52, 1353-1359.
Nordstrom, D.K. (2002). Public health. Worldwide occurrences of arsenic in ground water. Science 296, 2143-2145.
Okamoto, Y., Chou, P.H., Kim, S.Y., Suzuki, N., Laxmi, Y.R., Okamoto, K., Liu, X., Matsuda, T., and Shibutani, S. (2008). Oxidative DNA damage in XPC-knockout and its wild mice treated with equine estrogen. Chem Res Toxicol 21, 1120-1124.
Ono, T., Kaneda, T., Muto, A., and Yoshida, T. (2009). Positive transcriptional regulation of the human {micro} opioid receptor gene by poly(ADP-ribose) polymerase-1 and increasing of its DNA-binding affinity based on polymorphism of -172G/T. J Biol Chem.
Qin, X.J., Hudson, L.G., Liu, W., Ding, W., Cooper, K.L., and Liu, K.J. (2008). Dual actions involved in arsenite-induced oxidative DNA damage. Chem Res Toxicol 21, 1806-1813.
Qiu, L., Wang, Z., and Shi, X. (2008). Associations between XPC polymorphisms and risk of cancers: A meta-analysis. Eur J Cancer 44, 2241-2253.
Reardon, J.T., Bessho, T., Kung, H.C., Bolton, P.H., and Sancar, A. (1997). In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc Natl Acad Sci U S A 94, 9463-9468.
Rezvani, H.R., Ged, C., Bouadjar, B., de Verneuil, H., and Taieb, A. (2008). Catalase overexpression reduces UVB-induced apoptosis in a human xeroderma pigmentosum reconstructed epidermis. Cancer Gene Ther 15, 241-251.
Roboz, G.J., Dias, S., Lam, G., Lane, W.J., Soignet, S.L., Warrell, R.P., Jr., and Rafii, S. (2000). Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood 96, 1525-1530.
Rohrdanz, E., Schmuck, G., Ohler, S., and Kahl, R. (2001). The influence of oxidative stress on catalase and MnSOD gene transcription in astrocytes. Brain Res 900, 128-136.
Scanlon, J.M., Aizenman, E., and Reynolds, I.J. (1997). Effects of pyrroloquinoline quinone on glutamate-induced production of reactive oxygen species in neurons. Eur J Pharmacol 326, 67-74.
Schuliga, M., Chouchane, S., and Snow, E.T. (2002). Upregulation of glutathione-related genes and enzyme activities in cultured human cells by sublethal concentrations of inorganic arsenic. Toxicol Sci 70, 183-192.
Schwerdtle, T., Walter, I., and Hartwig, A. (2003). Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg. DNA Repair (Amst) 2, 1449-1463.
Scott, N., Hatlelid, K.M., MacKenzie, N.E., and Carter, D.E. (1993). Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol 6, 102-106.
Shen, H., Sturgis, E.M., Khan, S.G., Qiao, Y., Shahlavi, T., Eicher, S.A., Xu, Y., Wang, X., Strom, S.S., Spitz, M.R., et al. (2001). An intronic poly (AT) polymorphism of the DNA repair gene XPC and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Res 61, 3321-3325.
Shi, H., Shi, X., and Liu, K.J. (2004). Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255, 67-78.
Shih, A.H., and Holland, E.C. (2006). Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232, 139-147.
Shimizu, Y., Iwai, S., Hanaoka, F., and Sugasawa, K. (2003). Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J 22, 164-173.
Smith, A.H., Hopenhayn-Rich, C., Bates, M.N., Goeden, H.M., Hertz-Picciotto, I., Duggan, H.M., Wood, R., Kosnett, M.J., and Smith, M.T. (1992). Cancer risks from arsenic in drinking water. Environ Health Perspect 97, 259-267.
Snow, E.T. (1992). Metal carcinogenesis: mechanistic implications. Pharmacol Ther 53, 31-65.
Sugasawa, K., Ng, J.M., Masutani, C., Iwai, S., van der Spek, P.J., Eker, A.P., Hanaoka, F., Bootsma, D., and Hoeijmakers, J.H. (1998). Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2, 223-232.
Takebayashi, Y., Nakayama, K., Kanzaki, A., Miyashita, H., Ogura, O., Mori, S., Mutoh, M., Miyazaki, K., Fukumoto, M., and Pommier, Y. (2001). Loss of heterozygosity of nucleotide excision repair factors in sporadic ovarian, colon and lung carcinomas: implication for their roles of carcinogenesis in human solid tumors. Cancer Lett 174, 115-125.
Thoma, B.S., and Vasquez, K.M. (2003). Critical DNA damage recognition functions of XPC-hHR23B and XPA-RPA in nucleotide excision repair. Mol Carcinog 38, 1-13.
Toledano, M.B., and Leonard, W.J. (1991). Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci U S A 88, 4328-4332.
Volker, M., Mone, M.J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J.H., van Driel, R., van Zeeland, A.A., and Mullenders, L.H. (2001). Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8, 213-224.
Wang, G., Dombkowski, A., Chuang, L., and Xu, X.X. (2004). The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response. Cell Res 14, 303-314.
Wang, T.S., Hsu, T.Y., Chung, C.H., Wang, A.S., Bau, D.T., and Jan, K.Y. (2001). Arsenite induces oxidative DNA adducts and DNA-protein cross-links in mammalian cells. Free Radic Biol Med 31, 321-330.
Wanibuchi, H., Hori, T., Meenakshi, V., Ichihara, T., Yamamoto, S., Yano, Y., Otani, S., Nakae, D., Konishi, Y., and Fukushima, S. (1997). Promotion of rat hepatocarcinogenesis by dimethylarsinic acid: association with elevated ornithine decarboxylase activity and formation of 8-hydroxydeoxyguanosine in the liver. Jpn J Cancer Res 88, 1149-1154.
Westervelt, P., Brown, R.A., Adkins, D.R., Khoury, H., Curtin, P., Hurd, D., Luger, S.M., Ma, M.K., Ley, T.J., and DiPersio, J.F. (2001). Sudden death among patients with acute promyelocytic leukemia treated with arsenic trioxide. Blood 98, 266-271.
Witkiewicz-Kucharczyk, A., and Bal, W. (2006). Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicol Lett 162, 29-42.
Wong, A.J., Bigner, S.H., Bigner, D.D., Kinzler, K.W., Hamilton, S.R., and Vogelstein, B. (1987). Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci U S A 84, 6899-6903.
Wu, Y.H., Cheng, Y.W., Chang, J.T., Wu, T.C., Chen, C.Y., and Lee, H. (2007). Reduced XPC messenger RNA level may predict a poor outcome of patients with nonsmall cell lung cancer. Cancer 110, 215-223.
Xie, Z., Liu, S., Zhang, Y., and Wang, Z. (2004). Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Res 32, 5981-5990.
Yamanaka, K., Hasegawa, A., Sawamura, R., and Okada, S. (1991). Cellular response to oxidative damage in lung induced by the administration of dimethylarsinic acid, a major metabolite of inorganic arsenics, in mice. Toxicol Appl Pharmacol 108, 205-213.
Yamanaka, K., and Okada, S. (1994). Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals. Environ Health Perspect 102 Suppl 3, 37-40.
Yedjou, C.G., and Tchounwou, P.B. (2007). In-vitro cytotoxic and genotoxic effects of arsenic trioxide on human leukemia (HL-60) cells using the MTT and alkaline single cell gel electrophoresis (Comet) assays. Mol Cell Biochem 301, 123-130.
Yih, L.H., and Lee, T.C. (1999). Effects of exposure protocols on induction of kinetochore-plus and -minus micronuclei by arsenite in diploid human fibroblasts. Mutat Res 440, 75-82.
Yokoi, M., Masutani, C., Maekawa, T., Sugasawa, K., Ohkuma, Y., and Hanaoka, F. (2000). The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J Biol Chem 275, 9870-9875.
You, J.S., Wang, M., and Lee, S.H. (2003). Biochemical analysis of the damage recognition process in nucleotide excision repair. J Biol Chem 278, 7476-7485.
Zabarovsky, E.R., Lerman, M.I., and Minna, J.D. (2002). Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 21, 6915-6935.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top