跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俞淵
研究生(外文):Yu-Yuan Huang
論文名稱:SARS冠狀病毒之附屬蛋白質ORF8a和ORF8之特性
論文名稱(外文):Characterization of SARS-CoV encoded accessory proteins ORF8a and ORF8
指導教授:柯順龍
指導教授(外文):Jon J.L. Ko
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:58
中文關鍵詞:嚴重急性呼吸道症候群附屬蛋白質細胞凋亡
外文關鍵詞:Severe acute respiratory syndromeaccessory proteinsapoptosis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
SARS-CoV是一種引起嚴重急性呼吸道症候群 (severe acute respiratory syndrome, SARS)的冠狀病毒。由人類檢體所分離出的SARS-CoV可能來自於果子狸或貉。比較從果子貍分離出的動物SARS-CoV-like virus和人類的SARS-CoV的基因序列,有99.8%的相似度。主要的序列差異在於人類的ORF8有29個核苷酸的減少。動物的SARS-CoV-like virus在宿主細胞內會轉譯一條連續性的ORF8蛋白質,而人類的SARS-CoV則在宿主細胞內轉譯出兩條蛋白質ORF8a及ORF8b。在本實驗室之前的研究顯示,ORF8a位於粒線體。在酵母菌雙雜合系統,發現ORF8a和細胞內的調控鈣離子濃度的蛋白質CAML有交互作用,但ORF8及ORF8b並沒有。在Hela細胞的Tet/on系統中,發現ORF8a會增強staurosporine所引起的細胞凋亡。而本論文的主要目標在於研究ORF8a及ORF8其特性及生物功能,藉此更進一步了解病毒在宿主細胞的致病機轉。
利用細胞螢光呈色及次細胞分離法,我們發現當細胞內CAML正常存在時,ORF8a主要位於粒線體,而ORF8可能位於內質網。若我們過度表現CAML在細胞內,ORF8a和ORF8會改變原來的表現位置,和CAML的分布有很明顯的共位現象。利用免疫沉澱法,證實這個現象可能是因為ORF8a或ORF8和CAML皆有交互作用。ORF8a和CAML有很強的交互作用,但ORF8和CAML則有較弱的結合能力,導致ORF8a改變原來的分布。在之前的研究發現,SARS-CoV同樣會感染肺部及腸道細胞,並可以進行複製,但肺部細胞有嚴重的細胞凋亡,腸道細胞卻沒有。我們分別利用肺部細胞株A549以及結腸細胞株Caco-2,表現ORF8a或ORF8以觀察是否會造成細胞凋亡。我們在A549表現ORF8a及ORF8,並利用Propidium iodide染色,發現有DNA斷裂的情形;利用TMRM染劑偵測粒線體膜電位變化,當A549處理Staurosporine,使細胞走向凋亡,發現ORF8a和ORF8皆會促進此凋亡的反應;只處理DMSO的控制組,ORF8a和ORF8也有較低程度的細胞凋亡,和propidium iodide染色的實驗相呼應。有趣的是,腸道細胞株Caco-2無論有無處理Staurosporine,皆不會促進細胞凋亡。
目前,我們並不清楚ORF8a或ORF8是否藉由和CAML的交互作用,而影響細胞凋亡。未來我們將建立降低CAML表現的A549及Caco-2細胞,並重複上述的實驗,以觀察ORF8a或ORF8所造成細胞凋亡,和細胞內蛋白質CAML的關連。
SARS-CoV, a coronavirus, was identified as the etiologic agent for severe acute respiratory syndrome. It is established that human SARS-CoV originated from animals, such as palm civets and raccoon dogs. SARS-CoV genome shares about 99.8% homology with its animal counterpart. The major difference of the two viruses is the 29 nucleotide deletion found in the corresponding open reading frame (ORF) 8 of human SARS-CoV, given rise to ORF8a and ORF8b. Our previous data had shown that ORF8a localizes to mitochondria. Using yeast two-hybrid screening, ORF8a, but not ORF8 and ORF8b, was shown to interact with calcium-modulating cyclophilin ligand (CAML), a protein had been known to regulate the intracellular Ca2+ concentration. Using Hela cell Tet/on system, ORF8a can promote the apoptosis initiated by staurosporine. The main goal of this dissertation is to determine the biological functions of ORF8 and ORF8a that might give better understandings to the pathogenesis of both viruses.
With immunofluorescence assay and subcellular fractionation, ORF8a and ORF8 are shown to be located in mitochondria and ER, separately, in the presence of endogenous CAML. However, when we ectopically expressed CAML, both ORF 8a and ORF8 co-localized with exogenous CAML and displayed a similar pattern of distribution, which differed from that in the presence of endogenous CAML. ORF8a was shown to have higher binding capacity for CAML than that of ORF8 in an immunoprecipitation assay, which likely contributed to the redistribution of ORF8a. In light of reports indicating that in SARS patient lung cells showed readily apoptosis than that of enterocytes, although both tissues are permissive for viral infection and growth. We proceeded to evaluate the apoptotic effect of either ORF8a or ORR8 on an alveolar epithelium cell, A549 and an enterocyte, Caco-2. A549 was showed to have DNA fragementation in the presence of ORF8a or ORF8 by propidium iodide staining, while both proteins also facilitated staurosporine-induced apoptosis using TMRM staining assay that targeting at changes in mitochondrial membrane potential. A549 was also showed low grade of apoptosis in the DMSO control group in the presence of ORF8a or ORF8, which coincided with the observed induction of DNA fragmentation by both proteins. Interestingly, Caco-2 with ectopically expressed ORF8a or ORF8 failed to exhibit apoptotic phenotype enhancement regardless of the presence or absence of staurosporine.
Currently, the contribution of interaction between CAML and ORF8a or even ORF8 in apoptosis remains unclear. In the future, we will re-examine the above stated observations in both A549 and Caco-2 cells with CAML knockdown for the evaluation of the contribution of the interactions between CAML and ORF8a or CAML and ORF8.
英文摘要........................................................................................................................4
中文摘要........................................................................................................................5
緒論...............................................................................................................................6
第一節、 前言........................................................................................................6
第二節、 SARS 疾病介紹.....................................................................................6
1. 臨床症狀........................................................................................................6
2. 傳播途徑........................................................................................................6
3. SARS 致病原.................................................................................................6
第三節、 SARS冠狀病毒(SARS-CoV)介紹.........................................................7
1. 冠狀病毒的簡介............................................................................................7
2. SARS-CoV的分類.........................................................................................7
3. 組織器官分佈................................................................................................8
4. SARS-CoV的基因體(Genome)…………………………………………….8
5. SARS-CoV的受體和進入細胞.....................................................................9
6. SARS-CoV的複製和轉錄.............................................................................9
7. 結構性蛋白質(structural proteins)………………………………………..10
8. 附屬性蛋白質(accessory proteins) ……………………………………….11
第四節、 SARS-CoV 的來源...............................................................................12
1. 跨物種傳染(Cross-species transmission) ………………………………...12
2. 儲存宿主(reservoir)……………………………………………………….12
第五節 研究動機與實驗目的..............................................................................13
1. 人類SARS-CoV 在宿主細胞所表現的ORF8a 和動物SARS-CoV-like
virus 所表現的ORF8 其特性上的差異.......................................................13
2. SARS-CoV 能感染肺部或腸道細胞,但其臨床症狀並不相同………...14
2
材料與方法..................................................................................................................16
1. 細胞培養......................................................................................................16
2. 使用之質體..................................................................................................16
3. 細胞轉染......................................................................................................17
4. 細胞螢光呈色並用共軛焦顯微鏡觀察......................................................17
5. 次細胞分離技術..........................................................................................17
6. 西方墨點分析法(western blot analysis)…………………………………..18
7. 蛋白質連結以及免疫沉澱分析..................................................................19
8. 利用Propidium iodide (PI)將DNA 染色,用FACs 觀察並分析.............20
9. 利用TMRM 偵測粒線體電位差的變化,用FACs 觀察並分析.............20
10. 萃取total RNA 及RT-PCR………………………………………………..20
11. 慢病毒(lentivirus)的製備、濃縮與純化.....................................................22
12. 統計方法(Statistical analysis)……………………………………………..23
結果..............................................................................................................................24
第一節、 SARS-CoV附屬蛋白質ORF8a 及ORF8 在細胞內分布的位置...…24
第二節、 ORF8a 或ORF8 和細胞內蛋白質的結合..........................................25
第三節、 ORF8a 或ORF8 在肺部細胞株A549 的生物功能............................26
第四節、 ORF8a 或ORF8 是否調控細胞內蛋白質CAML,使細胞走向凋亡.28
第五節、 ORF8a 和ORF8 表現在A549 及Caco-2 細胞株的生物活性差異..30
討論..............................................................................................................................31
第一節、 SARS-CoV 附屬蛋白質ORF8a 及ORF8 在細胞內分布的位置......31
第二節、 ORF8a 或ORF8 和細胞內蛋白質的結合..........................................32
第三節、 ORF8a 或ORF8 在肺部細胞株A549 的生物功能...........................33
第四節、 ORF8a 或ORF8 是否調控細胞內蛋白質CAML,使細胞走向凋亡.35
第五節、 ORF8a 和ORF8 表現在A549 及Caco-2 細胞株的生物活性差異..35
第六節、 總結與未來展望..................................................................................36
3
參考文獻......................................................................................................................37
圖表..............................................................................................................................46
Fig. 1. ORF8a and ORF8 localizes in cytoplasm………………………………...46
Fig. 2. ORF8a and ORF8 mainly localize in mitochondrial fraction…………….47
Fig. 3. ORF8a localizes to mitochondria, but ORF8 doesn’t…………………….48
Fig. 4. ORF8a interacts with CAML strongly, but ORF8 interacts with CAML
weakly……………………………………………………………………49
Fig. 5. ORF8a and ORF8 partially co-localizes to CAML………………………50
Fig. 6. ORF8a and ORF8 induce DNA fragementation in A549 cells………...…51
Fig. 7. ORF8a and ORF8 induce mitochondrial membrane potential loss in A549
……………………………………………………………………………53
Fig. 8. CAML mRNA expression in A549, VeroE6, Caco-2 and 293t…………...54
Fig. 9. Relative viral titer in A549 cells………………………………………….55
Fig. 10. ORF8a and ORF8 don’t affect mitochondrial membrane potential in
Caco-2……………………………………………………………………57
Table 1 pLKO.1-siRNA 的序列.........................................................................58
1. Cumulative Number of Reported Probable Cases of Severe Acute Respiratory Syndrome (SARS). World Health Organization (2003).
2. Tsang, K.W., Ho, P.L., Ooi, G.C., Yee, W.K., Wang, T., Chan-Yeung, M., Lam, W.K., Seto, W.H., Yam, L.Y., Cheung, T.M., Wong, P.C., Lam, B., Ip, M.S., Chan, J., Yuen, K.Y. & Lai, K.N. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348, 1977-1985 (2003).
3. Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Yung, M.Y., Leung, C.B., To, K.F., Lui, S.F., Szeto, C.C., Chung, S. & Sung, J.J. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348, 1986-1994 (2003).
4. Seto, W.H., Tsang, D., Yung, R.W., Ching, T.Y., Ng, T.K., Ho, M., Ho, L.M. & Peiris, J.S. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet 361, 1519-1520 (2003).
5. Anderson, R.M., Fraser, C., Ghani, A.C., Donnelly, C.A., Riley, S., Ferguson, N.M., Leung, G.M., Lam, T.H. & Hedley, A.J. Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemic. Philos Trans R Soc Lond B Biol Sci 359, 1091-1105 (2004).
6. Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Yee, W.K., Yan, W.W., Cheung, M.T., Cheng, V.C., Chan, K.H., Tsang, D.N., Yung, R.W., Ng, T.K. & Yuen, K.Y. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319-1325 (2003).
7. Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J.A., Lim, W., Rollin, P.E., Dowell, S.F., Ling, A.E., Humphrey, C.D., Shieh, W.J., Guarner, J., Paddock, C.D., Rota, P., Fields, B., DeRisi, J., Yang, J.Y., Cox, N., Hughes, J.M., LeDuc, J.W., Bellini, W.J. & Anderson, L.J. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953-1966 (2003).
8. Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Laman, J.D., de Jong, T., van Doornum, G., Lim, W., Ling, A.E., Chan, P.K., Tam, J.S., Zambon, M.C., Gopal, R., Drosten, C., van der Werf, S., Escriou, N., Manuguerra, J.C., Stohr, K., Peiris, J.S. & Osterhaus, A.D. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263-270 (2003).
9. Fouchier, R.A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G.J., van den Hoogen, B.G., Peiris, M., Lim, W., Stohr, K. & Osterhaus, A.D. Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423, 240 (2003).
10. McIntosh, K., Kapikian, A.Z., Turner, H.C., Hartley, J.W., Parrott, R.H. & Chanock, R.M. Seroepidemiologic studies of coronavirus infection in adults and children. Am J Epidemiol 91, 585-592 (1970).
11. Weiss, S.R. & Navas-Martin, S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69, 635-664 (2005).
12. Gonzalez, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E. & Enjuanes, L. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 148, 2207-2235 (2003).
13. Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Rozanov, M., Spaan, W.J. & Gorbalenya, A.E. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331, 991-1004 (2003).
14. Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Shen, H., Qiu, L., Li, Z., Geng, J., Cai, J., Han, H., Li, X., Kang, W., Weng, D., Liang, P. & Jiang, S. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 203, 622-630 (2004).
15. Thiel, V., Ivanov, K.A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Snijder, E.J., Rabenau, H., Doerr, H.W., Gorbalenya, A.E. & Ziebuhr, J. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84, 2305-2315 (2003).
16. Simmons, G., Reeves, J.D., Rennekamp, A.J., Amberg, S.M., Piefer, A.J. & Bates, P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A 101, 4240-4245 (2004).
17. Hofmann, H., Geier, M., Marzi, A., Krumbiegel, M., Peipp, M., Fey, G.H., Gramberg, T. & Pohlmann, S. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun 319, 1216-1221 (2004).
18. Han, D.P., Kim, H.G., Kim, Y.B., Poon, L.L. & Cho, M.W. Development of a safe neutralization assay for SARS-CoV and characterization of S-glycoprotein. Virology 326, 140-149 (2004).
19. Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Sullivan, J.L., Luzuriaga, K., Greenough, T.C., Choe, H. & Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454 (2003).
20. Wang, P., Chen, J., Zheng, A., Nie, Y., Shi, X., Wang, W., Wang, G., Luo, M., Liu, H., Tan, L., Song, X., Wang, Z., Yin, X., Qu, X., Wang, X., Qing, T., Ding, M. & Deng, H. Expression cloning of functional receptor used by SARS coronavirus. Biochem Biophys Res Commun 315, 439-444 (2004).
21. Babcock, G.J., Esshaki, D.J., Thomas, W.D., Jr. & Ambrosino, D.M. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol 78, 4552-4560 (2004).
22. Hamming, I., Timens, W., Bulthuis, M.L., Lely, A.T., Navis, G.J. & van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203, 631-637 (2004).
23. Bell, D., Roberton, S. & Hunter, P.R. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores. Philos Trans R Soc Lond B Biol Sci 359, 1107-1114 (2004).
24. Yang, Z.Y., Huang, Y., Ganesh, L., Leung, K., Kong, W.P., Schwartz, O., Subbarao, K. & Nabel, G.J. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol 78, 5642-5650 (2004).
25. Masters, P.S. The molecular biology of coronaviruses. Adv Virus Res 66, 193-292 (2006).
26. Brierley, I., Digard, P. & Inglis, S.C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57, 537-547 (1989).
27. Tan, Y.J., Lim, S.G. & Hong, W. Characterization of viral proteins encoded by the SARS-coronavirus genome. Antiviral Res 65, 69-78 (2005).
28. Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P. & Blinov, V.M. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res 17, 4847-4861 (1989).
29. Herold, J., Siddell, S.G. & Gorbalenya, A.E. A human RNA viral cysteine proteinase that depends upon a unique Zn2+-binding finger connecting the two domains of a papain-like fold. J Biol Chem 274, 14918-14925 (1999).
30. van Dinten, L.C., van Tol, H., Gorbalenya, A.E. & Snijder, E.J. The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J Virol 74, 5213-5223 (2000).
31. Seybert, A., Hegyi, A., Siddell, S.G. & Ziebuhr, J. The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5'-to-3' polarity. RNA 6, 1056-1068 (2000).
32. Sawicki, S.G. & Sawicki, D.L. Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol 380, 499-506 (1995).
33. Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Davis, N. & Baric, R.S. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol 79, 14909-14922 (2005).
34. Tan, Y.J., Lim, S.G. & Hong, W. Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Res 72, 78-88 (2006).
35. Ito, N., Mossel, E.C., Narayanan, K., Popov, V.L., Huang, C., Inoue, T., Peters, C.J. & Makino, S. Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. J Virol 79, 3182-3186 (2005).
36. Shen, S., Lin, P.S., Chao, Y.C., Zhang, A., Yang, X., Lim, S.G., Hong, W. & Tan, Y.J. The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. Biochem Biophys Res Commun 330, 286-292 (2005).
37. Huang, C., Ito, N., Tseng, C.T. & Makino, S. Severe acute respiratory syndrome coronavirus 7a accessory protein is a viral structural protein. J Virol 80, 7287-7294 (2006).
38. Schaecher, S.R., Mackenzie, J.M. & Pekosz, A. The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles. J Virol 81, 718-731 (2007).
39. Law, P.T., Wong, C.H., Au, T.C., Chuck, C.P., Kong, S.K., Chan, P.K., To, K.F., Lo, A.W., Chan, J.Y., Suen, Y.K., Chan, H.Y., Fung, K.P., Waye, M.M., Sung, J.J., Lo, Y.M. & Tsui, S.K. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol 86, 1921-1930 (2005).
40. Yuan, X., Shan, Y., Zhao, Z., Chen, J. & Cong, Y. G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells. Virol J 2, 66 (2005).
41. Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A. & Palese, P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81, 548-557 (2007).
42. Tan, Y.J., Fielding, B.C., Goh, P.Y., Shen, S., Tan, T.H., Lim, S.G. & Hong, W. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J Virol 78, 14043-14047 (2004).
43. Yuan, X., Wu, J., Shan, Y., Yao, Z., Dong, B., Chen, B., Zhao, Z., Wang, S., Chen, J. & Cong, Y. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology 346, 74-85 (2006).
44. Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Li, P.H., Zhang, L.J., Guan, Y.J., Butt, K.M., Wong, K.L., Chan, K.W., Lim, W., Shortridge, K.F., Yuen, K.Y., Peiris, J.S. & Poon, L.L. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276-278 (2003).
45. Riley, S., Fraser, C., Donnelly, C.A., Ghani, A.C., Abu-Raddad, L.J., Hedley, A.J., Leung, G.M., Ho, L.M., Lam, T.H., Thach, T.Q., Chau, P., Chan, K.P., Lo, S.V., Leung, P.Y., Tsang, T., Ho, W., Lee, K.H., Lau, E.M., Ferguson, N.M. & Anderson, R.M. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300, 1961-1966 (2003).
46. Chinese, S.M.E.C. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666-1669 (2004).
47. Song, H.D., Tu, C.C., Zhang, G.W., Wang, S.Y., Zheng, K., Lei, L.C., Chen, Q.X., Gao, Y.W., Zhou, H.Q., Xiang, H., Zheng, H.J., Chern, S.W., Cheng, F., Pan, C.M., Xuan, H., Chen, S.J., Luo, H.M., Zhou, D.H., Liu, Y.F., He, J.F., Qin, P.Z., Li, L.H., Ren, Y.Q., Liang, W.J., Yu, Y.D., Anderson, L., Wang, M., Xu, R.H., Wu, X.W., Zheng, H.Y., Chen, J.D., Liang, G., Gao, Y., Liao, M., Fang, L., Jiang, L.Y., Li, H., Chen, F., Di, B., He, L.J., Lin, J.Y., Tong, S., Kong, X., Du, L., Hao, P., Tang, H., Bernini, A., Yu, X.J., Spiga, O., Guo, Z.M., Pan, H.Y., He, W.Z., Manuguerra, J.C., Fontanet, A., Danchin, A., Niccolai, N., Li, Y.X., Wu, C.I. & Zhao, G.P. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A 102, 2430-2435 (2005).
48. Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S.K., Huang, I.C., Xu, K., Vasilieva, N., Murakami, A., He, Y., Marasco, W.A., Guan, Y., Choe, H. & Farzan, M. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24, 1634-1643 (2005).
49. Sheahan, T., Rockx, B., Donaldson, E., Corti, D. & Baric, R. Pathways of cross-species transmission of synthetically reconstructed zoonotic severe acute respiratory syndrome coronavirus. J Virol 82, 8721-8732 (2008).
50. Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M., Liang, W., Zheng, H., Wan, K., Liu, Q., Cui, B., Xu, Y., Zhang, E., Wang, H., Ye, J., Li, G., Li, M., Cui, Z., Qi, X., Chen, K., Du, L., Gao, K., Zhao, Y.T., Zou, X.Z., Feng, Y.J., Gao, Y.F., Hai, R., Yu, D., Guan, Y. & Xu, J. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol 79, 11892-11900 (2005).
51. Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H., Lau, S.K., Woo, P.C., Suen, K.Y., Yuen, K.Y., Guan, Y. & Peiris, J.S. Identification of a novel coronavirus in bats. J Virol 79, 2001-2009 (2005).
52. Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Crameri, G., Hu, Z., Zhang, H., Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B.T., Zhang, S. & Wang, L.F. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676-679 (2005).
53. Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Leung, S.Y., Chan, K.H. & Yuen, K.Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102, 14040-14045 (2005).
54. Ren, W., Li, W., Yu, M., Hao, P., Zhang, Y., Zhou, P., Zhang, S., Zhao, G., Zhong, Y., Wang, S., Wang, L.F. & Shi, Z. Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. J Gen Virol 87, 3355-3359 (2006).
55. 林曜堂. SARS冠狀病毒之非結構性蛋白質ORF10之特性. 國立陽明大學生命科學院微生物暨免疫學研究所碩士論文 (2005).
56. Bram, R.J. & Crabtree, G.R. Calcium signalling in T cells stimulated by a cyclophilin B-binding protein. Nature 371, 355-358 (1994).
57. Tran, D.D., Edgar, C.E., Heckman, K.L., Sutor, S.L., Huntoon, C.J., van Deursen, J., McKean, D.L. & Bram, R.J. CAML is a p56Lck-interacting protein that is required for thymocyte development. Immunity 23, 139-152 (2005).
58. von Bulow, G.U. & Bram, R.J. NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily. Science 278, 138-141 (1997).
59. Hunton, D.L., Lucchesi, P.A., Pang, Y., Cheng, X., Dell'Italia, L.J. & Marchase, R.B. Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol Chem 277, 14266-14273 (2002).
60. Holloway, M.P. & Bram, R.J. A hydrophobic domain of Ca2+-modulating cyclophilin ligand modulates calcium influx signaling in T lymphocytes. J Biol Chem 271, 8549-8552 (1996).
61. Feng, P., Park, J., Lee, B.S., Lee, S.H., Bram, R.J. & Jung, J.U. Kaposi's sarcoma-associated herpesvirus mitochondrial K7 protein targets a cellular calcium-modulating cyclophilin ligand to modulate intracellular calcium concentration and inhibit apoptosis. J Virol 76, 11491-11504 (2002).
62. Chow, K.C., Hsiao, C.H., Lin, T.Y., Chen, C.L. & Chiou, S.H. Detection of severe acute respiratory syndrome-associated coronavirus in pneumocytes of the lung. Am J Clin Pathol 121, 574-580 (2004).
63. Leung, W.K., To, K.F., Chan, P.K., Chan, H.L., Wu, A.K., Lee, N., Yuen, K.Y. & Sung, J.J. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 125, 1011-1017 (2003).
64. Nakajima, N., Asahi-Ozaki, Y., Nagata, N., Sato, Y., Dizon, F., Paladin, F.J., Olveda, R.M., Odagiri, T., Tashio, M. & Sata, T. SARS coronavirus-infected cells in lung detected by new in situ hybridization technique. Jpn J Infect Dis 56, 139-141 (2003).
65. Magiorkinis, G., Magiorkinis, E., Paraskevis, D., Vandamme, A.M., Van Ranst, M., Moulton, V. & Hatzakis, A. Phylogenetic analysis of the full-length SARS-CoV sequences: evidence for phylogenetic discordance in three genomic regions. J Med Virol 74, 369-372 (2004).
66. Lo, A.W., Tang, N.L. & To, K.F. How the SARS coronavirus causes disease: host or organism? J Pathol 208, 142-151 (2006).
67. Cinatl, J., Jr., Hoever, G., Morgenstern, B., Preiser, W., Vogel, J.U., Hofmann, W.K., Bauer, G., Michaelis, M., Rabenau, H.F. & Doerr, H.W. Infection of cultured intestinal epithelial cells with severe acute respiratory syndrome coronavirus. Cell Mol Life Sci 61, 2100-2112 (2004).
68. 王怡青. SARS冠狀病毒之非結構性蛋白質ORF8a和ORF8之特性. 國立陽明大學生命科學院生物藥學研究所碩士論文 (2008).
69. Boya, P., Pauleau, A.L., Poncet, D., Gonzalez-Polo, R.A., Zamzami, N. & Kroemer, G. Viral proteins targeting mitochondria: controlling cell death. Biochim Biophys Acta 1659, 178-189 (2004).
70. Gillim-Ross, L., Taylor, J., Scholl, D.R., Ridenour, J., Masters, P.S. & Wentworth, D.E. Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR. J Clin Microbiol 42, 3196-3206 (2004).
71. Lamm, G.M., Steinlein, P., Cotten, M. & Christofori, G. A rapid, quantitative and inexpensive method for detecting apoptosis by flow cytometry in transiently transfected cells. Nucleic Acids Res 25, 4855-4857 (1997).
72. Kalejta, R.F., Brideau, A.D., Banfield, B.W. & Beavis, A.J. An integral membrane green fluorescent protein marker, Us9-GFP, is quantitatively retained in cells during propidium iodide-based cell cycle analysis by flow cytometry. Exp Cell Res 248, 322-328 (1999).
73. Ashkenazi, A. & Dixit, V.M. Death receptors: signaling and modulation. Science 281, 1305-1308 (1998).
74. Oostra, M., de Haan, C.A. & Rottier, P.J. The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8. J Virol 81, 13876-13888 (2007).
75. Law, P.Y., Liu, Y.M., Geng, H., Kwan, K.H., Waye, M.M. & Ho, Y.Y. Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome-associated coronavirus. FEBS Lett 580, 3643-3648 (2006).
76. Isenmann, S., Khew-Goodall, Y., Gamble, J., Vadas, M. & Wattenberg, B.W. A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Mol Biol Cell 9, 1649-1660 (1998).
77. Everett, H., Barry, M., Lee, S.F., Sun, X., Graham, K., Stone, J., Bleackley, R.C. & McFadden, G. M11L: a novel mitochondria-localized protein of myxoma virus that blocks apoptosis of infected leukocytes. J Exp Med 191, 1487-1498 (2000).
78. Sung, S.C., Chao, C.Y., Jeng, K.S., Yang, J.Y. & Lai, M.M. The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6. Virology 387, 402-413 (2009).
79. Chami, M., Oules, B., Szabadkai, G., Tacine, R., Rizzuto, R. & Paterlini-Brechot, P. Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32, 641-651 (2008).
80. Varthakavi, V., Heimann-Nichols, E., Smith, R.M., Sun, Y., Bram, R.J., Ali, S., Rose, J., Ding, L. & Spearman, P. Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu. Nat Med 14, 641-647 (2008).
81. Galluzzi, L., Brenner, C., Morselli, E., Touat, Z. & Kroemer, G. Viral control of mitochondrial apoptosis. PLoS Pathog 4, e1000018 (2008).
82. Wang, Y., Yang, H., Liu, H., Huang, J. & Song, X. Effect of staurosporine on the mobility and invasiveness of lung adenocarcinoma A549 cells: an in vitro study. BMC Cancer 9, 174 (2009).
83. Chiu, R.W., Chim, S.S., Tong, Y.K., Fung, K.S., Chan, P.K., Zhao, G.P. & Lo, Y.M. Tracing SARS-coronavirus variant with large genomic deletion. Emerg Infect Dis 11, 168-170 (2005).
84. Leung, R.K. & Whittaker, P.A. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 107, 222-239 (2005).
85. Zou, G.M. & Yoder, M.C. Application of RNA interference to study stem cell function: current status and future perspectives. Biol Cell 97, 211-219 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top