跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 10:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳亞侖
研究生(外文):Ya-Luen Chen
論文名稱:不動桿菌屬genomicspecies2之外膜蛋白與genomicspecies3和13TU之carbapenemase在imipenem抗藥所扮演的角色
論文名稱(外文):Role of outer membrane proteins in Acinetobacter genomic species 2 and the carbapenemase in Acinetobacter genomic species 3 and 13TU involved in imipenem resistance
指導教授:胡文熙
指導教授(外文):Wensi S. Hu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:不動桿菌屬抗藥性外膜蛋白二維電泳亞胺培南
外文關鍵詞:Acinetobacter spp.Antibiotic Resistantouter membrane proteins2-D electrophoresisimipenem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
實驗室之前研究A. baumannii對imipenem的抗藥機轉,二維電泳發現分子量約30 kDa蛋白質表現量在imipenem抗藥菌株(ab1266)比 imipenem敏感菌株(ab1254S)多,經質譜儀鑑定為class D β-lactamase OXA66;RT-PCR發現mRNA level也有相似的情形,OXA66 mRNA表現量較imipenem敏感菌株多。為了了解是否還有其他機制參與imipenem的抗藥,我們將imipenem敏感菌株(ab1254S)以加藥誘導的方式產生imipenem抗藥菌株(ab1254R),用RT-PCR比較已報告與imipenem抗藥有關基因的mRNA表現量,發現都沒有顯著的差異,而ab1254R經CCCP作用後的MIC值下降了8倍,說明尚有其他未被證實efflux pump參與抗藥的可能性。再以二維電泳比較ab1254S和ab1254R的外膜蛋白,經質譜儀鑑定,共十三種蛋白質表現量有差異性,在ab1254R菌株之外膜蛋白Omp25及CarO表現量增加,其餘十一種蛋白表現量減少,依功能分為4類:【1】預測與營養代謝相關:雙羧酸代謝外膜蛋白、醣類運輸外膜蛋白、Fe3+吸收的受器蛋白以及運送長鏈脂肪酸的外膜蛋白。【2】與氧化代謝和ATP合成相關: ATP合成酵素F1中的α次單位、ATP合成酵素F1中的β次單位,構成參與TCA cycle以及電子傳遞鏈中的succinate dehydrogenase flavoprotein subunit【3】與外膜的通透和組合相關:OmpA、與有機溶劑的耐受度或增加細胞膜的通透性有關之OstA以及大約94 kDa之預測外膜蛋白質(相當於SDS-PAGE分子量顯著表現量減少的95 kDa蛋白質)【4】與纖毛的合成相關之CsuD蛋白質。這些在ab1254R有顯著增加或減少的蛋白質,是否與imipenem抗藥有直接的關係,需要更進一步的實驗來驗證。為了探究除了A. baumannii以外的不動桿菌屬是否也存在著class D β-lactamases,我們以multiplex PCR發現Acinetobacter genomic species 13TU和Acinetobacter genomic species 3的imipenem抗藥菌株存在有OXA-58蛋白,並且在此基因上游存在ISAba3,在imipenem敏感菌株(ab5 和 ab16)也有相同的發現。儘管ab16菌株OXA-58基因上游的序列雖然發生變異,但oxa-58 mRNA表現量不管是抗藥菌株或敏感菌株都沒有顯著的差異。然而在大腸桿菌系統大量表現OXA-58蛋白,結果發現MIC值上升了7.8倍,說明OXA-58蛋白是導致imipenem抗藥的部分原因,並且推測有其它的機制協同oxa-58參予imipenem的抗藥,未來將以進一步的實驗來證明。
Our laboatory previously demonstrated that overexpression of the OXA-66 in imipenem-resistant strains of Acinetobacter baumannii. The oxa-66 mRNA level was also significantly higher in imipenem-resistant strains than those of imipenem-susceptible strains. To investigate whether other mechanisms involved in the imipenem resistance. We generated the imipenem-resistant strain ab1254R from the imipenem-susceptible strain ab1254S. The mRNA levels of the already known imipenem resistance-associated porins or an efflux pump were no significant differences between ab1254S and ab1254R. However, there was an eightfold reduction in the imipenem resistance with ab1254R when CCCP was added. This suggested that other unproved efflux pumps may be involved in resistance to imipenem of the ab1254R. Furthermore, comparing the OMPs between the imipenem-susceptible strain ab1254S and the imipenem-resistant strain ab1254R. There were thirteen proteins identified with significant differences by using mass spectrometry. Only the Omp25/CarO was up-regulated with ab1254R, other eleven proteins were down-regulated and classified with four types according to their function.The first type is associated with putative nutrient metabolisms, such as the dicarboxylic acids porin precursor, the glucose-sensitive porin (OprB-like), the ferric siderophore receptor protein and the long-chain fatty acid transport protein. The second type is associated with oxidative metabolism and ATP synthesis, such as the F0F1 ATP synthase subunit α, the F0F1 ATP synthase subunit β and the succinate dehydrogenase flavoprotein subunit. The third type is associated with assembly and permeability of OMPs, such as the OmpA, the OstA involved organic solvent tolerance or membrane permeability and the 94 kDa putative outer membrane protein, which is equal to a 95 kDa protein that decrease expression significantly in SDS-PAGE. The fourth type is associated with biogenesis of bacterial pili, such as CsuD. Whether these proteins that increase or decrease significantly in ab1254R were directly associated with imipenem resistance. We need more studies to prove these discoveries.
In order to investigate the class D β-lactamases distribution besides Acinetobacter baumannii. We found the imipenem-resistant strains acinetobacter genomic species 13TU and acinetobacter genomic species 3 with OXA-58 by multiplex PCR, and the ISAba3 was present upstream of the OXA-58 gene. The imipenem-susceptible strains(ab5 and ab16)were also found similar regulation by ISAba3. Despite upstream sequence of the OXA-58 gene changed in ab16, the oxa-66 mRNA level was no significantly differences between imipenem-resistant strains and imipenem-susceptible strains. However, we overexpressed the OXA-58 in E. coli system, and the minimal inhibitory concentrations (MIC) were determined by the E-test. The results showed that overexpression of the OXA-58 elevated 7.8-folds for the resistance to imipenem, and illustrate OXA-58 is involved part of the imipenem resistance. It suggests that there are other mechanisms participated in imipenem resistance synergically with OXA-58, and we need further research to prove them in the future.
中文摘要---------------------------------------------------3
英文摘要---------------------------------------------------5
第一章、緒論-----------------------------------------------7
壹、不動桿菌屬簡介-----------------------------------------7
貳、細菌之抗藥機制 ----------------------------------------8
参、抗生素Carbapenem--------------------------------------13
第二章、材料與方法 ---------------------------------------14
壹、菌種與質體-------------------------------------------14
貳、引子序列(Primers)----------------------------------14
参、藥品和酵素-------------------------------------------14
肆、菌種儲存---------------------------------------------14
伍、連續加藥培養篩選抗藥菌株 (Multistep selection resistance)----------------------------------------------14
陸、最低抑菌藥物濃度Minimum Inhibitory Concentration(MIC)測定-----------------------------------------------------15
柒、法式高壓破碎機(FRENCH Press)-----------------------16
捌、外膜蛋白萃取(outer membrane protein extraction)----17
玖、Methanol- Chloroform Precipitation of Proteins---- 17
拾、蛋白質定量(Protein Determination)------------------17
拾壹、蛋白質膠體電泳製備(SDS-PAGE)----------------------18
拾貳、二維電泳與蛋白質質譜分析----------------------------18
拾参、快速銀染法(Rapid silver staining)-----------------21
拾肆、DNA 選殖(DNA cloning)-----------------------------21
一、DNA之製備---------------------------------------------21
二、聚合酶連鎖反應(Polymerase chain reaction;PCR)------22
三、限制酵素切割與連接酵素的使用--------------------------23
四、自洋菜膠上萃取萃取DNA(Gel DNA Fragments extraction)-23
五、勝任細胞(Competent cell)製備--------------------------23
六、熱休克轉形(Heat shock transformation)-----------------24
七、快速篩選法(Quick screen)----------------------------24
八、DNA定序(DNA sequencing)-----------------------------24
拾伍、RNA之萃取純化(RNA extraction)---------------------25
拾陸、反轉錄-聚合酵素連鎖反應(Reverse-transcription PCR)-----------------------------------------------------------25
第三章、結果---------------------------------------------26
壹、臨床imipenem敏感菌株ab1254S和ab8S以imipenem加藥誘導產生具有imipenem抗藥性的菌株---------------------------------26
貳、以RT-PCR分析與imipenem抗藥有關基因-------------------26
参、Efflux pump活性試驗----------------------------------26
肆、利用SDS-PAGE分析未加藥誘導菌株(ab8S和ab1254S)和加藥誘導-------------------------------------------------------27
產生抗藥性菌株(ab8R和ab1254R)的蛋白質差異--------------27
伍、蛋白質二維電泳及質譜分析-----------------------------27
陸、以multiplex PCR檢測Acinetobacter spp.是否存在OXA carbapenemases-------------------------------------------31
柒、以PCR檢測OXA-58基因上下游是否有IS ( insertion sequence )-----------------------------------------------32
捌、β-lactamase OXA-58 gene定序--------------------------32
玖、RT-PCR分析OXA-58基因的表現---------------------------33
拾、在大腸桿菌中大量表現OXA-58蛋白質對於imipenem抗藥性的影響--------------------------------------------------------33
第四章、討論----------------------------------------------35
圖表------------------------------------------------------42
附錄------------------------------------------------------59
參考文獻--------------------------------------------------60
[1] M. Van Looveren, H. G., Antimicrobial resistance of Acinetobacter spp. in Europe. Clinical Microbiology & Infection 2004, 10, 684-704.

[2] J. M. Cisneros, J. R.-B., Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment. Clinical Microbiology & Infection 2002, 8, 687-693.

[3] Go, E. S., Urban, C., Burns, J., Mariano, N., et al., Clinical and molecular epidemiology of acinetobacter infections sensitive only to polymyxin B and sulbactam. The Lancet 1994, 344, 1329-1332.

[4] Corbella, X., Montero, A., Pujol, M., Dominguez, M. A., et al., Emergence and Rapid Spread of Carbapenem Resistance during a Large and Sustained Hospital Outbreak of Multiresistant Acinetobacter baumannii. J. Clin. Microbiol. 2000, 38, 4086-4095.

[5] G. Bou, G. C. M. A. D. C. Q. J. M.-B., PCR-based DNA fingerprinting (REP-PCR, AP-PCR) and pulsed-field gel electrophoresis characterization of a nosocomial outbreak caused by imipenem- and meropenem-resistant Acinetobacter baumannii. Clinical Microbiology & Infection 2000, 6, 635-643.

[6] Lopez-Hernandez, S., Alarcon, T., Lopez-Brea, M., Carbapenem resistance mediated by beta-lactamases in clinical isolates of Acinetobacter baumannii in Spain. Eur J Clin Microbiol Infect Dis 1998 Apr, 17(4), 282-285.

[7] Lauderdale, T.-L., Clifford McDonald, L., Shiau, Y.-R., Chen, P.-C., et al., The status of antimicrobial resistance in Taiwan among gram-negative pathogens: the Taiwan surveillance of antimicrobial resistance (TSAR) program, 2000. Diagnostic Microbiology and Infectious Disease 2004, 48, 211-219.
[8] Lu, P.-L., Huang, L.-Y., Lian, S.-T., Chang, et al., How carbapenem-resistant Acinetobacter spp. established in a newly constructed hospital. International Journal of Antimicrobial Agents 2008, 31, 463-466.

[9] Tomas, M. d. M., Beceiro, A., Perez, A., Velasco, D., et al., Cloning and Functional Analysis of the Gene Encoding the 33- to 36-Kilodalton Outer Membrane Protein Associated with Carbapenem Resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2005, 49, 5172-5175.

[10] Dupont, M., Pages, J. M., Lafitte, D., Siroy, A., Bollet, C., Identification of an OprD Homologue in Acinetobacter baumannii. J. Proteome Res. 2005, 4, 2386-2390.

[11] Siroy, A., Molle, V., Lemaitre-Guillier, C., Vallenet, D., et al., Channel Formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2005, 49, 4876-4883.

[12] Hu, W. S., Li, P.-C., Cheng, C.-Y., Correlation between Ceftriaxone Resistance of Salmonella enterica Serovar Typhimurium and Expression of Outer Membrane Proteins OmpW and Ail/OmpX-Like Protein, Which Are Regulated by BaeR of a Two-Component System. Antimicrob. Agents Chemother. 2005, 49, 3955-3958.

[13] Sader, H. S., and Gales, A.C., Emerging strategies in infectious diseases: new carbapenem and trinem antibacterial agents. Drugs 2001, 61, 553-564.

[14] Marchand, I., Damier-Piolle, L., Courvalin, P., Lambert, T., Expression of the RND-Type Efflux Pump AdeABC in Acinetobacter baumannii Is Regulated by the AdeRS Two-Component System. Antimicrob. Agents Chemother. 2004, 48, 3298-3304.

[15] Higgins, P. G., Wisplinghoff, H., Stefanik, D., Seifert, H., Selection of topoisomerase mutations and overexpression of adeB mRNA transcripts during an outbreak of Acinetobacter baumannii. J. Antimicrob. Chemother. 2004, 54, 821-823.

[16] Magnet, S., Courvalin, P., Lambert, T., Resistance-Nodulation-Cell Division-Type Efflux Pump Involved in Aminoglycoside Resistance in Acinetobacter baumannii Strain BM4454. Antimicrob. Agents Chemother. 2001, 45, 3375-3380.

[17] Marchand, I., Damier-Piolle, L., Courvalin, P., Lambert, T., Expression of the RND-Type Efflux Pump AdeABC in Acinetobacter baumannii Is Regulated by the AdeRS Two-Component System. Antimicrob. Agents Chemother. 2004, 48, 3298-3304.

[18] Damier-Piolle, L., Magnet, S., Bremont, S., Lambert, T., Courvalin, P., AdeIJK, a Resistance-Nodulation-Cell Division Pump Effluxing Multiple Antibiotics in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2008, 52, 557-562.

[19] Chau, S.-L., Chu, Y.-W., Houang, E. T. S., Novel Resistance-Nodulation-Cell Division Efflux System AdeDE in Acinetobacter Genomic DNA Group 3. Antimicrob. Agents Chemother. 2004, 48, 4054-4055.

[20] Chu, Y. W., Chau, S. L., Houang, E. T. S., Presence of active efflux systems AdeABC, AdeDE and AdeXYZ in different Acinetobacter genomic DNA groups. J Med Microbiol 2006, 55, 477-478.

[21] Su, X.-Z., Chen, J., Mizushima, T., Kuroda, T., Tsuchiya, T., AbeM, an H+-Coupled Acinetobacter baumannii Multidrug Efflux Pump Belonging to the MATE Family of Transporters. Antimicrob. Agents Chemother. 2005, 49, 4362-4364.
[22] Bellido, F., Veuthey, C., Blaser, J., Banernfeind, A., Pechere, J. C., Novel resistance to imipenem associated with an altered PBP-4 in a Pseudomonas aeruginosa clinical isolate. J. Antimicrob. Chemother. 1990, 25, 57-68.

[23] Neuwirth, C., Siebor, E., Duez, J.-M., Pechinot, A., Kazmierczak, A., Imipenem resistance in clinical isolates of Proteus mirabilis associated with alterations in penicillin-binding proteins. J. Antimicrob. Chemother. 1995, 36, 335-342.

[24] Fernandez-Cuenca, F., Martinez-Martinez, L., Conejo, M. C., Ayala, J. A., et al., Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J. Antimicrob. Chemother. 2003, 51, 565-574.

[25]Bush, L.M., Calmon, J., and Johnson, C.C. Newer penicillins and beta-lactamase inhibitors. Infect Dis Clin North Am.1995, 9: 653-686.

[26] Corvec, S., Caroff, N., Espaze, E., Giraudeau, C., et al., AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J. Antimicrob. Chemother. 2003, 52, 629-635.

[27] Walsh, T. R., Toleman, M. A., Poirel, L., Nordmann.Metallo-beta-Lactamases: the Quiet before the Storm? Clin. Microbiol. Rev. 2005, 18, 306-325.

[28]Koh, T.H., Babini, G.S., Woodford, N., Sng, L.H., Hall, L.M., and Livermore, D.M. Carbapenem-hydrolysing IMP-1 beta-lactamase in Klebsiella pneumoniae from Singapore. Lancet. 1999, 353: 2162.

[29]Cornaglia, G., Riccio, M.L., Mazzariol, A., Lauretti, L., Fontana, R., and Rossolini, G.M. Appearance of IMP-1 metallo-beta-lactamase in Europe. Lancet. 1999, 353: 899-900.

[30]Chu, Y.W., Afzal-Shah, M., Houang, E.T., Palepou, M.I., Lyon, D.J.,
Woodford, N., and Livermore, D.M. IMP-4, a novel metallo-beta-lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998. Antimicrob Agents Chemother. 2001, 45:710-714.

[31]Lauretti, L., Riccio, M.L., Mazzariol, A., Cornaglia, G., Amicosante, G.,
Fontana, R., and Rossolini, G.M. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999, 43: 1584-1590

[32] Shibata, N., Doi, Y., Yamane, K., Yagi, T., et al., PCR Typing of Genetic Determinants for Metallo-beta-Lactamases and Integrases Carried by Gram-Negative Bacteria Isolated in Japan, with Focus on the Class 3 Integron. J. Clin. Microbiol. 2003, 41, 5407-5413.

[33] Lee, K., Yum, J. H., Yong, D., Lee, H. M., et al., Novel Acquired Metallo-beta-Lactamase Gene, blaSIM-1, in a Class 1 Integron from Acinetobacter baumannii Clinical Isolates from Korea. Antimicrob. Agents Chemother. 2005, 49, 4485-4491.

[34] Brown, S., Amyes, S., OXA beta-lactamases in Acinetobacter: the story so far. J. Antimicrob. Chemother. 2006, 57, 1-3.

[35] Donald, H. M., Scaife, W., Amyes, S. G. B., Young, H.-K., Sequence Analysis of ARI-1, a Novel OXA beta -Lactamase, Responsible for Imipenem Resistance in Acinetobacter baumannii 6B92. Antimicrob. Agents Chemother. 2000, 44, 196-199.

[36] S. Brown, H. K. Y. S. G. B. A., Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clinical Microbiology & Infection 2005, 11, 15-23.

[37] Bou, G., Oliver, A., Martinez-Beltran, J., OXA-24, a Novel Class D beta -Lactamase with Carbapenemase Activity in an Acinetobacter baumannii Clinical Strain. Antimicrob. Agents Chemother. 2000, 44, 1556-1561.

[38] Afzal-Shah, M., Woodford, N., Livermore, D. M., Characterization of OXA-25, OXA-26, and OXA-27, Molecular Class D beta-Lactamases Associated with Carbapenem Resistance in Clinical Isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2001, 45, 583-588.

[39] Marti, S., Sanchez-Cespedes, J., Blasco, M. D., Ruiz, M., et al., Characterization of the Carbapenem-Hydrolyzing Oxacillinase Oxa-58 in an Acinetobacter Genospecies 3 Clinical Isolate. Antimicrob. Agents Chemother. 2008, 52, 2955-2958.

[40] Marti, S., Sanchez-Cespedes, J., Blasco, et al.,Characterization of the carbapenem-hydrolyzing oxacillinase OXA-58 in an Acinetobacter phenon 6/ct13TU clinical isolate. Diagnostic Microbiology and Infectious Disease 2008, 61, 468-470.

[41] Mussi, M. A., Limansky, A. S., Viale, A. M., Acquisition of Resistance to Carbapenems in Multidrug-Resistant Clinical Strains of Acinetobacter baumannii: Natural Insertional Inactivation of a Gene Encoding a Member of a Novel Family of beta-Barrel Outer Membrane Proteins. Antimicrob. Agents Chemother. 2005, 49, 1432-1440.

[42] Aono, R., Negishi, T., Nakajima, H., Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli. Appl. Environ. Microbiol. 1994, 60, 4624-4626.

[43] Black, P. N., Kianian, S. F., DiRusso, C. C., Nunn, W. D., Long-chain fatty acid transport in Escherichia coli. Cloning, mapping, and expression of the fadL gene. J. Biol. Chem. 1985, 260, 1780-1789.

[44] Pettersson, I., Hardy, S. J. S., Liljas, A., The ribosomal protein L8 is a complex of L7/L12 and L10. FEBS Letters 1976, 64, 135-138.

[45] Bateman, A., Bycroft, M., The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). Journal of Molecular Biology 2000, 299, 1113-1119.

[46] Voulhoux, R., Tommassen, J., Omp85, an evolutionarily conserved bacterial protein involved in outer-membrane-protein assembly. Research in Microbiology 2004, 155, 129-135.

[47] John Werner, R. M., YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent outer membrane proteins of Escherichia coli. Molecular Microbiology 2005, 57, 1450-1459.

[48] Chakraborty, R., Storey, E., van der Helm D, Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli. Biometals 2007 Jun;20(3-4), 263-274. Epub 2006 Dec 2022.

[49] Aono, R., Negishi, T., Nakajima, H., Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli. Appl. Environ. Microbiol. 1994, 60, 4624-4626.

[50] Sampson, B. A., Misra, R., Benson, S. A., Identification and Characterization of a New Gene of Escherichia coli K-12 Involved in Outer Membrane Permeability. Genetics 1989, 122, 491-501.

[51] Siroy, A., Cosette, P., Seyer, D., Lemaitre-Guillier, C., et al., Global Comparison of the Membrane Subproteomes between a Multidrug-Resistant Acinetobacter baumannii Strain and a Reference Strain. J. Proteome Res. 2006, 5, 3385-3398.

[52] Parke, D., Garcia, M. A., Ornston, L. N., Cloning and Genetic Characterization of dca Genes Required for beta-Oxidation of Straight-Chain Dicarboxylic Acids in Acinetobacter sp. Strain ADP1. Appl. Environ. Microbiol. 2001, 67, 4817-4827.

[53] Wylie, J. L., Worobec, E. A., The OprB porin plays a central role incarbohydrate uptake in Pseudomonas aeruginosa. J. Bacteriol. 1995, 177, 3021-3026.

[54] Woodford, N., Ellington, M. J., Coelho, J. M., Turton, J. F., et al., Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International Journal of Antimicrobial Agents 2006, 27, 351-353.

[55] Heritier, C., Poirel, L., Fournier, P.-E., Claverie, J.-M., et al.,Characterization of the Naturally Occurring Oxacillinase of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2005, 49, 4174-4179.

[56] Hu, W. S., Yao, S.-M., Fung, C.-P., Hsieh, et al., An OXA-66/OXA-51-Like Carbapenemase and Possibly an Efflux Pump Are Associated with Resistance to Imipenem in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2007, 51, 3844-3852.

[57] Girbe Buist, A. S. J. K. O. P. K., LysM, a widely distributed protein motif for binding to (peptido)glycans. Molecular Microbiology 2008, 68, 838-847.

[58] George A. O'Toole, R. K., Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology 1998, 30, 295-304.

[59] Mikkel Klausen, A. H. P. R. L. L. A. A.-J. S. M. T. T.-N., Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology 2003, 48, 1511-1524.

[60] Loehfelm, T. W., Luke, N. R., Campagnari, A. A., Identification and Characterization of an Acinetobacter baumannii Biofilm-Associated Protein. J. Bacteriol. 2008, 190, 1036-1044.

[61] Vila, J., Marti, S., Sanchez-Cespedes, J., Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 2007, 59, 1210-1215.

[62] Rogers, H. J., P. F. Thurman, and I. D. Burdett. The bactericidal action of beta-lactam antibiotics on an autolysin-deficient strain of Bacillus subtilis. J. Gen. Microbiol. 1983.129:465

[63] Diarra, M. S., Lavoie, M. C., Jacques, M., Darwish, I., et al., Species selectivity of new siderophore-drug conjugates that use specific iron uptake for entry into bacteria. Antimicrob. Agents Chemother. 1996, 40, 2610-2617.

[64] Brochu, A., Brochu, N., Nicas, T. I., Parr, T. R., Jr., et al., Modes of action and inhibitory activities of new siderophore-beta-lactam conjugates that use specific iron uptake pathways for entry into bacteria. Antimicrob. Agents

[65] Collis, C. M., Grigg, G. W., An Escherichia coli mutant resistant to phleomycin, bleomycin, and heat inactivation is defective in ubiquinone synthesis. J. Bacteriol. 1989, 171, 4792-4798.

[66] Bratu, S., Landman, D., Martin, D. A., Georgescu, C., Quale, J., Correlation of Antimicrobial Resistance with β-Lactamases, the OmpA-Like Porin, and Efflux Pumps in Clinical Isolates of Acinetobacter baumannii Endemic to New York City. Antimicrob. Agents Chemother. 2008, 52, 2999-3005.
[67] Tashiro, Y., Nomura, N., Nakao, R., Senpuku, H., et al., Opr86 Is Essential for Viability and Is a Potential Candidate for a Protective Antigen against Biofilm Formation by Pseudomonas aeruginosa. J. Bacteriol. 2008, 190, 3969-3978.

[68] Hung-Chuan Chiu, T.-L. L. J.-T. W., Identification and Characterization of an Organic Solvent Tolerance Gene in Helicobacter pylori. Helicobacter 2007, 12, 74-81.

[69] Ghosh A; Ghosh M; Niu C; Malouin F; Moellmann U; et al. Iron transport-mediated drug delivery using mixed-ligand siderophore-beta-lactam conjugates. Chem Biol. 1996 Dec;3(12):1011-9

[70] Sader, H.S., and Gales, A.C. Emerging strategies in infectious diseases: new carbapenem and trinem antibacterial agents. Drugs. 2001 61: 553-564.

[71] Molloy, M.P., Herbert, B.R., Slade, M.B., Rabilloud, T., et al., Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem . 2000, 267: 2871-2881.

[72] Pankuch, G. A., Jueneman, S. A., Davies, T. A., Jacobs, M. R., Appelbaum, P. C., In Vitro Selection of Resistance to Four beta -Lactams and Azithromycin in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 1998, 42, 2914-2918.

[73] Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557-80
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊