跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李蕢名
研究生(外文):Kuei-Ming Lee
論文名稱:CD45在重組靈芝蛋白(rLZ-8)調節T細胞活化中所扮演的角色:細胞程序性凋亡與介白素-2的產生
論文名稱(外文):The Role of CD45 in Recombinant LZ-8-mediated T cell Activation: Apoptosis and IL-2 Production
指導教授:許先業
指導教授(外文):Hsien-Yeh Hsu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:61
中文關鍵詞:靈芝蛋白-8CD45細胞程序性凋亡T細胞
外文關鍵詞:LZ-8CD45apoptosisT cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
CD45是ㄧ個典型的受體型酪胺酸去磷酸酶,主要扮演調節免疫T細胞活化與死亡的角色。靈芝蛋白(Ling Zhi-8)其結構類似凝集素,最初是由Ganoderma lucidum靈芝屬中萃取出來並藉由酵母菌複製合成重組蛋白(rLZ-8)。首先我們發現LZ-8會和CD45或T細胞抗原受器結合並快速的促使T細胞走向程序性凋亡。具體來說,經由rLZ-8刺激之後可觀察到caspase-8的活化與cytochrome c 釋放到細胞質的現象,接著我們使用caspase-3抑制劑(Z-DEVE-fmk)來探討LZ-8促使T細胞走向程序性凋亡的機制,發現Fas-FasL的訊息傳遞與粒線體調節的路徑皆有參與在此程序性凋亡的機制中。除此之外,在LZ-8促使T細胞走向程序性凋亡的機制中也發現一條經由CD45參與的路徑。實驗上,藉由CD45缺陷的細胞株(J45.01)我們證明了相較於一般正常細胞株(Jurkat)而言,在CD45缺陷的情況下可大幅降低LZ-8所引發的細胞程序性凋亡,並且CD45的去磷酸酶活性並不參與在此細胞程序性凋亡的機制中。而在另一方面,我們發現CD45與其去磷酸酶的活性也參與在LZ-8刺激細胞活化產生介白素-2的過程中。總結我們目前的發現證明了CD45在LZ-8刺激細胞死亡與活化中扮演了多重的角色。
CD45, a prototypic receptor-like protein tyrosine phosphatase plays a critical role in the control point for T cell life and death. A lectin-like protein Ling Zhi-8, originally extracted from Ganoderma lucidum is been cloned as a yeast recombinant protein. Initially, we found binding of LZ-8 to CD45 and/or T cell antigen receptor quickly induces T cell apoptosis. Specifically, upon LZ-8 stimulation, we detected caspase 8 was activated and cytochrome c was released to cytosol. To dissect the LZ-8 mediated T cell apoptosis, using caspase-3 inhibitor (Z-DEVE-fmk), we found both Fas-FasL interaction and mitochondria-mediated pathways involved in the apoptosis. In addition, a CD45-dependent pathway participating LZ-8-induced apoptosis was explored. In essence, using a CD45 deficient cell line (J45.01), we demonstrated a distant decreasing of LZ-8 induced apoptosis compared to Jurkat cell, though independing on CD45 activity. On the other hand, we also found CD45 involved in LZ-8-stimulated interleukin-2 (IL-2) production. In conclusion, our current findings demonstrate that CD45 involved in LZ-8-mediated apoptosis with multi-pathways fashion.
Contents
�� Contents 1
�� Abstract (in Chinese) 6
�� Abstract (in English) 7
�� Introduction 8
�� Materials and Methods 12
�� Cell lines 12
�� Cell preparation 12
�� CD4+ T cells culture 12
�� Antibodies 12
�� Reagents 13
�� Preparation of membrane protein 13
�� Western blotting analysis 13
�� Apoptosis analysis 14
�� MTT assay 14
�� Measure intracellular ROS releasing 15
�� Measurement of the mitochondrial membrane potential 15
�� Mitochondrial isolation 15
�� siRNA transfections 16
�� Statistical analysis 16
�� Results 17
�� Recombinant Ling-Zhi-8 induces apoptosis of human primary T cells and human Jurkat T cells 17
�� Fas-FasL interaction is involved in rLZ-8-induced Jurkat T cells apoptosis 18
�� Mitochondria-involved pathway is one of rLZ-8-induced Jurkat T cells apoptosis mechanisms 19
�� rLZ-8 induces a caspase-independent activation in Jurkat T cell apoptosis 20
�� Receptors are involved in rLZ-8-induced Jurkat T cell apoptosis, especially CD45 21
�� The rLZ-8-induce Jurkat T cell apoptosis mechanism is not dependant on CD45 activity 22
�� CD45 not only involved in apoptosis but also play a role in Jurkat T cell activation 23
�� Discussion 24
�� References 30
�� Figure legend 36
References
1. Paterson, R. R. 2006. Ganoderma - a therapeutic fungal biofactory. Phytochemistry 67:1985-2001.
2. Kino, K., A. Yamashita, K. Yamaoka, J. Watanabe, S. Tanaka, K. Ko, K. Shimizu, and H. Tsunoo. 1989. Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem 264:472-478.
3. Murasugi, A., S. Tanaka, N. Komiyama, N. Iwata, K. Kino, H. Tsunoo, and S. Sakuma. 1991. Molecular cloning of a cDNA and a gene encoding an immunomodulatory protein, Ling Zhi-8, from a fungus, Ganoderma lucidum. J Biol Chem 266:2486-2493.
4. Tanaka, S., K. Ko, K. Kino, K. Tsuchiya, A. Yamashita, A. Murasugi, S. Sakuma, and H. Tsunoo. 1989. Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). An immunomodulator from a fungus, Ganoderma lucidium, having similarity to immunoglobulin variable regions. J Biol Chem 264:16372-16377.
5. Miyasaka, N., H. Inoue, T. Totsuka, R. Koike, K. Kino, and H. Tsunoo. 1992. An immunomodulatory protein, Ling Zhi-8, facilitates cellular interaction through modulation of adhesion molecules. Biochem Biophys Res Commun 186:385-390.
6. Haak-Frendscho, M., K. Kino, T. Sone, and P. Jardieu. 1993. Ling Zhi-8: a novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell Immunol 150:101-113.
7. Hsu, H. Y., K. F. Hua, W. C. Wu, J. Hsu, S. T. Weng, T. L. Lin, C. Y. Liu, R. S. Hseu, and C. T. Huang. 2008. Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells. J Cell Physiol 215:15-26.
8. Hua, K. F., H. Y. Hsu, L. K. Chao, S. T. Chen, W. B. Yang, J. Hsu, and C. H. Wong. 2007. Ganoderma lucidum polysaccharides enhance CD14 endocytosis of LPS and promote TLR4 signal transduction of cytokine expression. J Cell Physiol 212:537-550.
9. van der Hem, L. G., J. A. van der Vliet, C. F. Bocken, K. Kino, A. J. Hoitsma, and W. J. Tax. 1995. Ling Zhi-8: studies of a new immunomodulating agent. Transplantation 60:438-443.
10. Van Parijs, L., and A. K. Abbas. 1998. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280:243-248.
11. Muller, C. I., T. Kumagai, J. O'Kelly, N. P. Seeram, D. Heber, and H. P. Koeffler. 2006. Ganoderma lucidum causes apoptosis in leukemia, lymphoma and multiple myeloma cells. Leuk Res 30:841-848.
12. Kaufmann, S. H., and M. O. Hengartner. 2001. Programmed cell death: alive and well in the new millennium. Trends Cell Biol 11:526-534.
13. Green, D. R., N. Droin, and M. Pinkoski. 2003. Activation-induced cell death in T cells. Immunol Rev 193:70-81.
14. Brunner, T., R. J. Mogil, D. LaFace, N. J. Yoo, A. Mahboubi, F. Echeverri, S. J. Martin, W. R. Force, D. H. Lynch, C. F. Ware, and et al. 1995. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373:441-444.
15. Ju, S. T., D. J. Panka, H. Cui, R. Ettinger, M. el-Khatib, D. H. Sherr, B. Z. Stanger, and A. Marshak-Rothstein. 1995. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373:444-448.
16. Wilson, N. S., V. Dixit, and A. Ashkenazi. 2009. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 10:348-355.
17. Madeo, F., E. Frohlich, M. Ligr, M. Grey, S. J. Sigrist, D. H. Wolf, and K. U. Frohlich. 1999. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757-767.
18. Ott, M., V. Gogvadze, S. Orrenius, and B. Zhivotovsky. 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12:913-922.
19. Antunes, F., A. Salvador, H. S. Marinho, R. Alves, and R. E. Pinto. 1996. Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model. Free Radic Biol Med 21:917-943.
20. Cohen, G. M. 1997. Caspases: the executioners of apoptosis. Biochem J 326 ( Pt 1):1-16.
21. Fernandes-Alnemri, T., G. Litwack, and E. S. Alnemri. 1994. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269:30761-30764.
22. Nicholson, D. W., A. Ali, N. A. Thornberry, J. P. Vaillancourt, C. K. Ding, M. Gallant, Y. Gareau, P. R. Griffin, M. Labelle, Y. A. Lazebnik, and et al. 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37-43.
23. Thomas, M. L. 1989. The leukocyte common antigen family. Annu Rev Immunol 7:339-369.
24. Hermiston, M. L., Z. Xu, and A. Weiss. 2003. CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21:107-137.
25. Volarevic, S., B. B. Niklinska, C. M. Burns, C. H. June, A. M. Weissman, and J. D. Ashwell. 1993. Regulation of TCR signaling by CD45 lacking transmembrane and extracellular domains. Science 260:541-544.
26. Klaus, S. J., S. P. Sidorenko, and E. A. Clark. 1996. CD45 ligation induces programmed cell death in T and B lymphocytes. J Immunol 156:2743-2753.
27. Fortin, M., A. M. Steff, J. Felberg, I. Ding, B. Schraven, P. Johnson, and P. Hugo. 2002. Apoptosis mediated through CD45 is independent of its phosphatase activity and association with leukocyte phosphatase-associated phosphoprotein. J Immunol 168:6084-6089.
28. Leoni, L. M., Q. Chao, H. B. Cottam, D. Genini, M. Rosenbach, C. J. Carrera, I. Budihardjo, X. Wang, and D. A. Carson. 1998. Induction of an apoptotic program in cell-free extracts by 2-chloro-2'-deoxyadenosine 5'-triphosphate and cytochrome c. Proc Natl Acad Sci U S A 95:9567-9571.
29. Eskes, R., B. Antonsson, A. Osen-Sand, S. Montessuit, C. Richter, R. Sadoul, G. Mazzei, A. Nichols, and J. C. Martinou. 1998. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 143:217-224.
30. Bennett, M., K. Macdonald, S. W. Chan, J. P. Luzio, R. Simari, and P. Weissberg. 1998. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282:290-293.
31. Peter, M. E., and P. H. Krammer. 1998. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10:545-551.
32. O'Donnell, B. V., D. G. Tew, O. T. Jones, and P. J. England. 1993. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J 290 ( Pt 1):41-49.
33. Prudencio, C., F. Sansonetty, and M. Corte-Real. 1998. Flow cytometric assessment of cell structural and functional changes induced by acetic acid in the yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae. Cytometry 31:307-313.
34. Andree, H. A., C. P. Reutelingsperger, R. Hauptmann, H. C. Hemker, W. T. Hermens, and G. M. Willems. 1990. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem 265:4923-4928.
35. Maher, S., D. Toomey, C. Condron, and D. Bouchier-Hayes. 2002. Activation-induced cell death: the controversial role of Fas and Fas ligand in immune privilege and tumour counterattack. Immunol Cell Biol 80:131-137.
36. Schneider, P., and J. Tschopp. 2000. Apoptosis induced by death receptors. Pharm Acta Helv 74:281-286.
37. Lee, H. C., and Y. H. Wei. 2000. Mitochondrial role in life and death of the cell. J Biomed Sci 7:2-15.
38. Mazumder, S., D. Plesca, and A. Almasan. 2008. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol 414:13-21.
39. Habibovic, S., Z. Hrgovic, I. Bukvic, and I. Hrgovic. 2000. [Molecular mechanisms in apoptosis]. Med Arh 54:33-40.
40. Duriez, P. J., and G. M. Shah. 1997. Cleavage of poly(ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 75:337-349.
41. Lesage, S., A. M. Steff, F. Philippoussis, M. Page, S. Trop, V. Mateo, and P. Hugo. 1997. CD4+ CD8+ thymocytes are preferentially induced to die following CD45 cross-linking, through a novel apoptotic pathway. J Immunol 159:4762-4771.
42. Steff, A. M., M. Fortin, F. Philippoussis, S. Lesage, C. Arguin, P. Johnson, and P. Hugo. 2003. A cell death pathway induced by antibody-mediated cross-linking of CD45 on lymphocytes. Crit Rev Immunol 23:421-440.
43. Liu, Z., R. Dawes, S. Petrova, P. C. Beverley, and E. Z. Tchilian. 2006. CD45 regulates apoptosis in peripheral T lymphocytes. Int Immunol 18:959-966.
44. Anand, A. R., and R. K. Ganju. 2006. HIV-1 gp120-mediated apoptosis of T cells is regulated by the membrane tyrosine phosphatase CD45. J Biol Chem 281:12289-12299.
45. Desharnais, P., G. Dupere-Minier, C. Hamelin, P. Devine, and J. Bernier. 2008. Involvement of CD45 in DNA fragmentation in apoptosis induced by mitochondrial perturbing agents. Apoptosis 13:197-212.
46. Penninger, J. M., J. Irie-Sasaki, T. Sasaki, and A. J. Oliveira-dos-Santos. 2001. CD45: new jobs for an old acquaintance. Nat Immunol 2:389-396.
47. Wu, M. X., Z. Ao, M. Hegen, C. Morimoto, and S. F. Schlossman. 1996. Requirement of Fas(CD95), CD45, and CD11a/CD18 in monocyte-dependent apoptosis of human T cells. J Immunol 157:707-713.
48. Earl, L. A., and L. G. Baum. 2008. CD45 glycosylation controls T-cell life and death. Immunol Cell Biol 86:608-615.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 探討重組靈芝蛋白LZ-8刺激CD4+CD25+T細胞分泌細胞激素及免疫調節功能
2. 探討嗜甲醇酵母重組的靈芝蛋白(rLZ-8)與CD45交互作用而影響T細胞接受體訊息傳遞於調控介白素-2的產生
3. 探討靈芝多醣體萃取物對人類非小細胞肺癌A549細胞生長之抑制效果
4. 靈芝多醣體萃取物使人類週邊原態T細胞轉變成調節型T細胞
5. 探討靈芝多醣體萃取物對TGF-β1誘導人類非小細胞肺癌A549細胞上皮細胞間質轉化之影響
6. 靈芝多醣體萃取物調控人類巨噬細胞產生顆粒性白血球群落刺激因子產生之訊息傳導途徑
7. 研究靈芝免疫調節功能蛋白質對人類血癌細胞株HL-60的影響
8. 探討重組蛋白LingZhi-8(LZ-8)在人類T細胞中調節介白素-2的訊息傳導
9. 以嗜甲醇酵母菌表現靈芝屬免疫調節蛋白質LZ-8、GMI和GFO-1並探討其免疫功能
10. 「靈芝-豆科」發酵產物之抗氧化活性及其對倉鼠脂質之影響
11. 飼料添加靈芝免疫調節蛋白基因轉殖酵母對點帶石斑非特異免疫反應的影響
12. 酸、鹼與溫度因子對重組靈芝免疫調節蛋白在結構與生物活性上的影響
13. 探討聯合使用靈芝多醣體萃取物和放射線對神經膠母細胞瘤細胞的影響
14. 靈芝多醣 PSG 與靈芝蛋白 LZ8 活化小鼠腹腔巨噬細胞及促進第一型 T 輔助細胞免疫反應之功效
15. 靈芝蛋白Ling Zhi-8鍵結於奈米金粒子促進巨噬細胞及脾細胞免疫調節能力與其粒徑依賴性質之探討