跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李岡諭
研究生(外文):Kang-Yu Li
論文名稱:染色質釣魚:一個測定活體內染色質配置狀態的技術
論文名稱(外文):Chromatin Fishing (Chrofi): a technique to determine 
the state of chromatin configuration in vivo
指導教授:吳韋訥
指導教授(外文):Wailap Victor Ng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:49
中文關鍵詞:染色質釣魚去氧核糖核酸結合蛋白染色質結構
外文關鍵詞:Chromatin FishingDNA-binding proteinschromatin configuration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
儘管目前已經有許多高效能(high-throughput)檢驗技術已經被研發用來研究蛋白質及和核糖核酸,但卻尚未有技術能有效率的研究去氧核糖核酸結合蛋白(DNA-binding proteins)。這些去氧核糖核酸結合蛋白與染色質編排(chromatin organization)、轉錄、去氧核糖核酸的複製、修補以及重組有關,而在染色質結構(chromatin configuration)上扮演重要的角色。為了了解活體內(in vivo)染色質結構,我們建立了一個名為染色質釣魚(Chromatin Fishing)的方法,藉由甲醛交互連結(formaldehyde crosslinking)及特殊的染色質純化方法來獲得原核生物中與去氧核糖核酸結合的蛋白質體(DNA-binding proteome),並進一步利用質譜儀(mass spectrometry)進行高效能的分析。而這些純化的去氧核糖核酸結合蛋白亦可適用於染色質沈澱(chromatin immunoprecipitation)技術分析。在本論文中,我們從高鹽古細菌Haloarcula marismortui中純化出更多的去氧核糖核酸結合蛋白並找到了一個新的轉錄因子候選(novel transcription factor candidate)。
Although high-throughput technologies have been established for studying gene expression at protein and RNA level, efficient large scale identification of DNA-binding proteins has yet to be developed. DNA-binding proteins play crucial roles on chromatin configuration that is involved in chromatin organization, transcription, DNA replication, DNA repair, and DNA recombination. To understand chromatin configuration in vivo, we tried to establish the Chromatin Fishing (Chrofi) method which involved formaldehyde crosslinking, specific chromatin purification and LC-MS/MS to profile DNA-binding proteome in prokaryotic cells. In addition to MS analysis of the protein-DNA complexes, the purified cross-linked DNA-protein complexes may also be used for ChIP assay. In our preliminary study, we had enriched DNA-binding proteins and found one novel transcription factor candidate in Haloarcula marismortui.
Abstract I
Chinese Abstract II
Table of Contents 1
List of Figures 2
List of Tables 3
Introduction 4
Materials and Methods 12
Results and Discussion 22
Conclusions 30
References 31
1. Koshland, D.E., Jr., Special essay. The seven pillars of life. Science, 2002. 295(5563): p. 2215-6.
2. Qiu, H. and Y. Wang, Exploring DNA-binding Proteins with In Vivo Chemical Cross-linking and Mass Spectrometry. J Proteome Res, 2009.
3. Farnham, P., Insights from genomic profiling of transcription factors. Nat Rev Genet, 2009. 10(9): p. 605-16.
4. Schones, D. and K. Zhao, Genome-wide approaches to studying chromatin modifications. Nat Rev Genet, 2008. 9(3): p. 179-91.
5. Barker, S., et al., A method for the isolation of covalent DNA-protein crosslinks suitable for proteomics analysis. Analytical Biochemistry, 2005. 344(2): p. 204-15.
6. Guerrero, C., et al., An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Mol Cell Proteomics, 2006. 5(2): p. 366-78.
7. Jackson, V., Formaldehyde cross-linking for studying nucleosomal dynamics. Methods, 1999. 17(2): p. 125-39.
8. Orlando, V., H. Strutt, and R. Paro, Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods, 1997. 11(2): p. 205-14.
9. Fox, C.H., et al., Formaldehyde fixation. J Histochem Cytochem, 1985. 33(8): p. 845-53.
10. Orlando, V., Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends in Biochemical Sciences, 2000. 25(3): p. 99-104.
11. Sutherland, B., J. Toews, and J. Kast, Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. Journal of mass spectrometry : JMS, 2008. 43(6): p. 699-715.
12. Vasilescu, J., X. Guo, and J. Kast, Identification of protein-protein interactions using in vivo cross-linking and mass spectrometry. Proteomics, 2004. 4(12): p. 3845-54.
13. Metz, B., et al., Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem, 2004. 279(8): p. 6235-43.
14. Domon, B. and R. Aebersold, Mass spectrometry and protein analysis. Science, 2006. 312(5771): p. 212-7.
15. Yates, J.R., 3rd, Mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct, 2004. 33: p. 297-316.
16. Aebersold, R. and M. Mann, Mass spectrometry-based proteomics. Nature, 2003. 422(6928): p. 198-207.
17. Cravatt, B., G. Simon, and J.R. Yates, The biological impact of mass-spectrometry-based proteomics. Nature, 2007. 450(7172): p. 991-1000.
18. Link, A.J., et al., Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol, 1999. 17(7): p. 676-82.
19. Wolters, D.A., M.P. Washburn, and J.R. Yates, 3rd, An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem, 2001. 73(23): p. 5683-90.
20. Bogdanov, B. and R. Smith, Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom. Rev., 2005. 24(2): p. 168-200.
21. Bantscheff, M., et al., Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem, 2007. 389(4): p. 1017-31.
22. Ong, S.E., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 2002. 1(5): p. 376-86.
23. Haqqani, A.S., et al., Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS. FASEB J, 2005. 19(13): p. 1809-21.
24. Gygi, S.P., et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 1999. 17(10): p. 994-9.
25. Shadforth, I.P., et al., i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics, 2005. 6: p. 145.
26. Gerber, S.A., et al., Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A, 2003. 100(12): p. 6940-5.
27. Chelius, D. and P.V. Bondarenko, Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res, 2002. 1(4): p. 317-23.
28. Wang, W., et al., Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem, 2003. 75(18): p. 4818-26.
29. Zhang, B., et al., Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res, 2006. 5(11): p. 2909-18.
30. Oren, A., et al., Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int J Syst Bacteriol, 1990. 40(2): p. 209-10.
31. Baliga, N.S., et al., Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Research, 2004. 14(11): p. 2221-34.
32. Woese, C.R. and G.E. Fox, Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA, 1977. 74(11): p. 5088-90.
33. Woese, C.R., O. Kandler, and M.L. Wheelis, Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA, 1990. 87(12): p. 4576-9.
34. Hickey, A.J., E. Conway de Macario, and A.J. Macario, Transcription in the archaea: basal factors, regulation, and stress-gene expression. Crit Rev Biochem Mol Biol, 2002. 37(6): p. 537-99.
35. Falb, M., et al., Metabolism of halophilic archaea. Extremophiles, 2008. 12(2): p. 177-96.
36. Breiling, A. and V. Orlando, Chromatin Immunoprecipitation of Protein Complexes. 2nd ed. Protein-Protein Interactions: A Molecular Cloning Manual, ed. E.A. Golemis and P.D. Adams. 2005, New York: Cold Spring Harbor Laboratory Press. 67-80.
37. Yates, J.R., 3rd, et al., Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem, 1995. 67(8): p. 1426-36.
38. Keller, A., et al., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem, 2002. 74(20): p. 5383-92.
39. Nesvizhskii, A.I., et al., A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem, 2003. 75(17): p. 4646-58.
40. Valkov, N.I., et al., Association of actin with DNA and nuclear matrix from Guerin ascites tumour cells. Mol Cell Biochem, 1989. 87(1): p. 47-56.
41. Nakayasu, H. and K. Ueda, Association of actin with the nuclear matrix from bovine lymphocytes. Experimental cell research, 1983. 143(1): p. 55.
42. Verheijen, R., W. van Venrooij, and F. Ramaekers, The nuclear matrix: structure and composition. J Cell Sci, 1988. 90 ( Pt 1): p. 11-36.
43. Barker, S., et al., Identification of mammalian proteins cross-linked to DNA by ionizing radiation. J Biol Chem, 2005. 280(40): p. 33826-38.
44. Nadeau, O.W. and G.M. Carlson, Protein Interactions Captured by Chemical Cross-linking. 2nd ed. Protein-Protein Interactions: A Molecular Cloning Manual, ed. E.A. Golemis and P.D. Adams. 2005, New York: Cold Spring Harbor Laboratory Press. 105-127.
45. Metz, B., et al., Identification of formaldehyde-induced modifications in proteins: reactions with insulin. Bioconjug Chem, 2006. 17(3): p. 815-22.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top