跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 21:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭嘉雄
研究生(外文):Chia-Hsiung Cheng
論文名稱:人類大腦聽覺皮質對短聲音具較佳敏感性研究
論文名稱(外文):Particular Sensitivity of Human Auditory Cortices to Short Tones
指導教授:林永煬林永煬引用關係
指導教授(外文):Yung-Yang Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:腦科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:27
中文關鍵詞:非配對誘發磁場類非配對誘發磁場最短聲音聽覺改變偵測腦磁圖
外文關鍵詞:Magnetic mismatch negativity (MMNm)Sub-standard MMNmShortest toneAuditory change detectionMagnetoencephalography (MEG)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:0
背景: 聲音長度的偵測在語言感知能力扮演重要角色。利用特異刺激方式 (oddball paradigm),非配對誘發電位 (MMN),或非配對誘發磁場 (MMNm) 可以反映出人類對於聲音長度改變的偵測。而在等比例刺激方式 (equiprobable paradigm) 中,也可以發現對於短聲音有類似非配對誘發電位之反應,因此,我們假設人類大腦對於最短聲音有較敏感之反應。本研究擬藉由腦神經磁場及行為反應來探討人類大腦如何處理等比例但不同長度的聲音。
材料與設計: 實驗一,記錄10位健康年輕受試者在25~125 毫秒(25-50-75-100-125 毫秒),50~150 毫秒 (50-75-100-125-150 毫秒) 等比例刺激方式,及最短聲音單獨進行刺激 (25 毫秒及50毫秒)的腦磁反應。實驗二為行為反應任務。受試者在每一個等比例刺激方式中,分別對最長、中間長度、及最短長度聲音進行按鍵反應,我們記錄其正確率,錯誤率,和反應時間。實驗三探討不同程度的聲音長度差異對最短聲音所誘發腦磁反應之影響。
結果: 與非配對誘發磁場 (MMNm) 類似的訊號,稱為類非配對誘發磁場 (sub-standard MMnm),可以在等比例刺激方式中被最短聲音所誘發。相對於最短聲音 (25 毫秒及50 毫秒)單獨進行刺激所得到的訊號 (N100m),sub-standard MMNm的訊號源位置較N100m前面。在行為反應結果,受試者對最短聲音的偵測有較佳的準確率及較低的錯誤率。此外,當每個刺激彼此差異程度增加,sub-standard MMNm 振幅也會上升。
結論: 經由sub-standard MMNm (注意力執行之前) 及行為反應(執行注意力) 結果,我們發現相較於較長聲音,人類聽覺皮質對於短聲音的偵測較具敏感性。
Background: Detection of sound duration is important for language perception. Duration change has been reflected by mismatch negativity (MMN) or its magnetic counterpart (MMNm) in oddball paradigms. MMN-like responses to short-duration sound were also found in an equiprobable-paradigm. It is thus hypothesized that there exists a preferential reactivity of human brains to duration shortening. The present study aimed to study how our brains differentially react to duration-varying tones based on neuromagnetic as well as behavioral measures. Materials and Methods: In Experiment 1, magnetoencephalographic responses were recorded in ten subjects to 25~125ms equiprobable paradigm (25-50-75-100-125 ms tones), 50~150ms equiprobable paradigm (50-75-100-125-150 ms tones), and single-tone paradigms of 25-ms or 50-ms duration. In Experiment 2, the subjects performed behavioral tasks after recognizing an assigned target sound in an individual equiprobable paradigm. In Experiment 3, the effect of deviance magnitude of the shortest tone within an equiprobable paradigm on neuromagnetic responses was evaluated in ten subjects. Results: MMNm-like activities, called sub-standard MMNm, were clearly elicited by the shortest tone in equiprobable conditions. For the same stimulus (25ms or 50ms tone), the generator of the sub-standard MMNm was anterior to that of the N100m. Higher correct response rates and lower error response rates were found while discriminating the shortest tone compared with discriminating longer tones. Moreover, sub-standard MMNm amplitude tended to increase with the increment of deviance magnitude of the shortest tone.
Conclusions: In conclusion, human brains are sensitive particularly to the shortest tone as revealed by the characteristic of sub-standard MMNm and behavioral performance.
目錄

論文電子檔著作權授權書…………………………………………… i
論文審定同意書……………………………………………………… ii
誌謝……………………………………………………………………iii
中文摘要……………………………………………………………… 1
英文摘要……………………………………………………………… 2
前言…………………………………………………………………… 3
材料與方法…………………………………………………………… 5
結果……………………………………………………………………10
討論與結論……………………………………………………………14
參考文獻………………………………………………………………18
圖目錄…………………………………………………………………21
表目錄…………………………………………………………………26
Alain C, Woods DL, Knight RT. A distributed cortical network for auditory sensory memory in humans. Brain Res 1998; 812: 23-37.

Alho K. Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear 1995; 16: 38-51.

Alho K, Tervaniemi M, Huotilainen M, Lavikainen J, Tiitinen H, Ilmoniemi RJ, et al. Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses. Psychophysiology 1996; 33: 369-75.

Alho K, Winkler I, Escera C, Huotilainen M, Virtanen J, Jaaskelainen IP, et al. Processing of novel sounds and frequency changes in the human auditory cortex: magnetoencephalographic recordings. Psychophysiology 1998; 35: 211-24.

Hamalainen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography -theory, instrumentation, and its applications to noninvasive studies of working human brain. Reviews of Modern Physics 1993; 65: 413-497.

Hari R, Hamalainen M, Ilmoniemi R, Kaukoranta E, Reinikainen K, Salminen J, et al. Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man. Neurosci Lett 1984; 50: 127-32.

Hari R, Rif J, Tiihonen J, Sams M. Neuromagnetic mismatch fields to single and paired tones. Electroencephalogr Clin Neurophysiol 1992; 82: 152-4.

Hoshiyama M, Okamoto H, Kakigi R. Priority of repetitive adaptation to mismatch response following undiscriminable auditory stimulation: a magnetoencephalographic study. Eur J Neurosci 2007; 25: 854-62.

Inouchi M, Kubota M, Ferrari P, Roberts TP. Magnetic mismatch fields elicited by vowel duration and pitch changes in Japanese words in humans: comparison between native- and non-speakers of Japanese. Neurosci Lett 2003; 353: 165-8.

Inouchi M, Kubota M, Ohta K, Shirahama Y, Takashima A, Horiguchi T, et al. Human auditory evoked mismatch field amplitudes vary as a function of vowel duration in healthy first-language speakers. Neurosci Lett 2004; 366: 342-6.

Jacobsen T, Schroger E. Is there pre-attentive memory-based comparison of pitch? Psychophysiology 2001; 38: 723-7.

Jacobsen T, Schroger E. Measuring duration mismatch negativity. Clin Neurophysiol 2003; 114: 1133-43.

Javitt DC, Schroeder CE, Steinschneider M, Arezzo JC, Vaughan HG, Jr. Demonstration of mismatch negativity in the monkey. Electroencephalogr Clin Neurophysiol 1992; 83: 87-90.

Kirmse U, Ylinen S, Tervaniemi M, Vainio M, Schroger E, Jacobsen T. Modulation of the mismatch negativity (MMN) to vowel duration changes in native speakers of Finnish and German as a result of language experience. Int J Psychophysiol 2008; 67: 131-43.

Levanen S, Ahonen A, Hari R, McEvoy L, Sams M. Deviant auditory stimuli activate human left and right auditory cortex differently. Cereb Cortex 1996; 6: 288-96.

Levanen S, Hari R, McEvoy L, Sams M. Responses of the human auditory cortex to changes in one versus two stimulus features. Exp Brain Res 1993; 97: 177-83.

Lin YY, Hsiao FJ, Shih YH, Yiu CH, Yen DJ, Kwan SY, et al. Plastic phase-locking and magnetic mismatch response to auditory deviants in temporal lobe epilepsy. Cereb Cortex 2007; 17: 2516-25.

Molholm S, Martinez A, Ritter W, Javitt DC, Foxe JJ. The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 2005; 15: 545-51.

Naatanen R, Gaillard AW, Mantysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 1978; 42: 313-29.

Naatanen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 2007; 118: 2544-90.

Naatanen R, Pakarinen S, Rinne T, Takegata R. The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol 2004; 115: 140-4.

Naatanen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 1987; 24: 375-425.

Nenonen S, Shestakova A, Huotilainen M, Naatanen R. Linguistic relevance of duration within the native language determines the accuracy of speech-sound duration processing. Brain Res Cogn Brain Res 2003; 16: 492-5.

Nenonen S, Shestakova A, Huotilainen M, Naatanen R. Speech-sound duration processing in a second language is specific to phonetic categories. Brain Lang 2005; 92: 26-32.

Okazaki S, Kanoh S, Takaura K, Tsukada M, Oka K. Change detection and difference detection of tone duration discrimination. Neuroreport 2006; 17: 395-9.

Paavilainen P, Alho K, Reinikainen K, Sams M, Naatanen R. Right hemisphere dominance of different mismatch negativities. Electroencephalogr Clin Neurophysiol 1991; 78: 466-79.

Pakarinen S, Takegata R, Rinne T, Huotilainen M, Naatanen R. Measurement of extensive auditory discrimination profiles using the mismatch negativity (MMN) of the auditory event-related potential (ERP). Clin Neurophysiol 2007; 118: 177-85.

Pantev C, Okamoto H, Ross B, Stoll W, Ciurlia-Guy E, Kakigi R, et al. Lateral inhibition and habituation of the human auditory cortex. Eur J Neurosci 2004; 19: 2337-44.

Posner MI, Walker JA, Friedrich FJ, Rafal RD. Effects of parietal injury on covert orienting of attention. J Neurosci 1984; 4: 1863-74.

Sams M, Alho K, Naatanen R. Sequential effects on the ERP in discriminating two stimuli. Biol Psychol 1983; 17: 41-58.

Sams M, Alho K, Naatanen R. Short-term habituation and dishabituation of the mismatch negativity of the ERP. Psychophysiology 1984; 21: 434-41.

Sams M, Hari R. Magnetoencephalography in the study of human auditory information processing. Ann N Y Acad Sci 1991; 620: 102-17.

Schroger E, Wolff C. Mismatch response of the human brain to changes in sound location. Neuroreport 1996; 7: 3005-8.

Tervaniemi M, Jacobsen T, Rottger S, Kujala T, Widmann A, Vainio M, et al. Selective tuning of cortical sound-feature processing by language experience. Eur J Neurosci 2006; 23: 2538-41.

Thonnessen H, Zvyagintsev M, Harke KC, Boers F, Dammers J, Norra C, et al. Optimized mismatch negativity paradigm reflects deficits in schizophrenia patients. A combined EEG and MEG study. Biol Psychol 2008; 77: 205-16.

Tiitinen H, Alho K, Huotilainen M, Ilmoniemi RJ, Simola J, Naatanen R. Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiology 1993; 30: 537-40.

Vainio M. Artificial neural network based prosody models for Finnish text-to-speech synthesis. Helsinki: Helsinki University Press, 2001.

Winkler I, Paavilainen P, Alho K, Reinikainen K, Sams M, Naatanen R. The effect of small variation of the frequent auditory stimulus on the event-related brain potential to the infrequent stimulus. Psychophysiology 1990; 27: 228-35.

Ylinen S, Shestakova A, Huotilainen M, Alku P, Naatanen R. Mismatch negativity (MMN) elicited by changes in phoneme length: a cross-linguistic study. Brain Res 2006; 1072: 175-85.

Zatorre RJ. Discrimination and recognition of tonal melodies after unilateral cerebral excisions. Neuropsychologia 1985; 23: 31-41.

Zatorre RJ, Samson S. Role of the right temporal neocortex in retention of pitch in auditory short-term memory. Brain 1991; 114 ( Pt 6): 2403-17.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top