跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐婉瑜
研究生(外文):Wan-Yu Hsu
論文名稱:記憶相關之聽覺誘發非配對腦磁場反應
論文名稱(外文):Memory-based Mismatch Negativity Response to Auditory Duration Change: An MEG Study
指導教授:林永煬林永煬引用關係
指導教授(外文):Yung-Yang Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:腦科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:37
中文關鍵詞:聽覺非配對誘發電位神經不反應期改變偵測聲音長度腦磁圖
外文關鍵詞:auditory mismatch negativity (MMN)neuronal refractorinesschange detectionsound durationmagnetoencephalography (MEG)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:449
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要

背景介紹:非配對誘發電位 (mismatch negativity, MMN)及非配對腦磁反應 (magnetic mismatch negativity, MMNm) 通常是將奇異聲音(deviant tone)和標準聲音(standard tone)所誘發的腦波相減而獲得,但此相減結果中,可能包含了感覺記憶相關及非記憶相關的腦部反應。我們嘗試增加一組控制聲音,試圖控制相減結果中非記憶相關的腦部反應。
實驗方法及材料:實驗中,每位受試者皆接受新異刺激方式(oddball block)及控制刺激方式(control block)之聽覺刺激。新異刺激方式中,包含了出現比例分別為20%及80%之奇異聲音 (50 ms)以及標準聲音 (125 ms);控制刺激方式中,包含了50 ms之奇異聲音及其他四種不同長度(25 ms, 75 ms, 100 ms, 125 ms)之聲音,分別以20%的比例出現。傳統非配對誘發磁場(traditional MMNm)之獲得方式為將奇異聲音和標準聲音所誘發的腦磁反應相減,而控制非配對誘發磁場(controlled MMNm)之獲得方式為將新異刺激方式中之奇異聲音和控制刺激方式中之奇異聲音所有發之腦磁反應相減。我們記錄了13位受試者之傳統減法以及控制減法所獲得之非配對磁場反應,並且比較兩種反應的潛時(latency)、振幅(amplitude)、腦內訊號來源(equivalent current dipole location)以及雙側大腦半球間的反應差異(inter-hemispheric asymmetry)。
研究結果:相較於傳統的非配對誘發磁場,控制非配對誘發磁場有較晚的潛時以及較大的振幅,且控制非配對誘發磁場的潛時和過去的顱內腦電波(intracranial EEG)動物實驗所得的結果較為相符。另外,傳統非配對誘發磁場的優勢半球為右側腦,但控制非配對誘發磁場反應則為雙側大腦半球共同控制處理。
結論:相較於傳統的非配對誘發磁場,控制非配對誘發磁場反應更能夠代表人類大腦在處理非預期的聲音刺激長度改變時,所牽涉的以感覺記憶為基礎的神經處理過程,而此反應過程,在雙側大腦半球的處理,較為平均。
重要性及意義:本研究中使用的控制刺激實驗設計方法,能夠降低所得之非配對誘發磁場結果中,非記憶相關部分所產生的效應,並且有效的呈現反應中和記憶相關的大腦神經反應。
Abstract

Objective: The mismatch negativity (MMN) or its magnetic counterpart (MMNm) is traditionally obtained by subtracting the brain responses to standards from those to deviants within the same oddball paradigm. Thus, this signal reflects not only the cognitive-related comparing process but also the differential sensory-related neuronal refractoriness between deviant- and standard-elicited responses. Here, we tried to extract the memory-based duration MMNm by adding a control condition to reduce the refractoriness effect.
Methods: Whole-head magnetoencephalographic responses were recorded in 13 healthy adult subjects in two blocked conditions: an oddball block consisting of 50 ms tones as deviants (P = 0.2) and 125 ms tones as standards, and a control block consisting of 50 ms tones as controls (P = 0.2), and 4 other equiprobable tones of 25 ms, 75 ms, 100 ms, and 125 ms in duration. A traditional MMNm was obtained by subtracting the responses to standards from those to deviants, while a controlled MMNm was determined by subtracting the responses to controls from those to deviants. Traditional MMNm and controlled MMNm were compared in terms of their peak latencies, amplitudes, equivalent current dipole (ECD) locations, and inter-hemispheric asymmetry.
Results: Controlled MMNm showed a longer latency and smaller amplitude than traditional MMNm. The peak latency of controlled MMNm after the onset of duration change was compatible with previous intracranial EEG recordings. Notably, the right-hemispheric dominance in traditional MMNm was not observed in controlled MMNm.
Conclusion: Compared with traditional MMNm, the controlled MMNm is a more specific electrophysiological marker for memory-based neural processing in response to auditory duration change, and shows less asymmetry of response amplitude between hemispheres.
Significance: The controlled experimental design reduces the effect of differential refractoriness and helps extract the component of memory-based MMNm.
Contents

Signature Page i
Thesis Approval Form ii
Acknowledgments 2
Table of Contents 3
Chinese Abstract 4
English Abstract 6
Introduction 8
Material and Methods 14
Participants 14
Auditory Stimulation Paradigm 14
Magnetoencephalography (MEG) 15
MEG recording 16
Data Analysis 17
Results 19
Discussion 22
Conclusions 26
References 27
List of Figures 31
List of Tables 37
Reference
Alho, K., Sams, M., Paavilainen, P., Reinikainen, K., & Naatanen, R. (1989). Event-related brain potentials reflecting processing of relevant and irrelevant stimuli during selective listening. Psychophysiology, 26, 514-528.

Barry, R.J., Cocker, K.I., Anderson, J.W., Gordon, E., & Rennie, C. (1992). Does the N100 evoked potential really habituate? Evidence from a paradigm appropriate to a clinical setting. Int J Psychophysiol, 13, 9-16.

Boltz, M. (1989). Time judgments of musical endings: effects of expectancies on the "filled interval effect". Percept Psychophys, 46, 409-418.

Brand, A., Urban, R., & Grothe, B. (2000). Duration tuning in the mouse auditory midbrain. J Neurophysiol, 84, 1790-1799.

Brinkmann, R.D., & Scherg, M. (1979). Human auditory on- and off-potentials of the brainstem. Scand Audiol, 8, 27-32.

Budd, T.W., Barry, R.J., Gordon, E., Rennie, C., & Michie, P.T. (1998). Decrement of the N1 auditory event-related potential with stimulus repetition: habituation vs. refractoriness. Int J Psychophysiol, 31, 51-68.

Butler, R.A. (1968). Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. J Acoust Soc Am, 44, 945-950.

Butler, R.A. (1972). Frequency specificity of the auditory evoked response to simultaneously and successively presented stimuli. Electroencephalogr Clin Neurophysiol, 33, 277-282.

Butler, R.A., Spreng, M., & Keidel, W.D. (1969). Stimulus repetition rate factors which influence the auditory evoked potential in man. Psychophysiology, 5, 665-672.

Casseday, J.H., Ehrlich, D., & Covey, E. (1994). Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science, 264, 847-850.

Chen, G.D. (1998). Effects of stimulus duration on responses of neurons in the chinchilla inferior colliculus. Hear Res, 122, 142-150.

Covey, E., Kauer, J.A., & Casseday, J.H. (1996). Whole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats. J Neurosci, 16, 3009-3018.

Elangovan, S., Cranfordt, J.L., Walker, L., & Stuart, A. (2005). A comparison of the mismatch negativity and a differential waveform response. Int J Audiol, 44, 637-646.

Fruhstorfer, H. (1971). Habituation and dishabituation of the human vertex response. Electroencephalogr Clin Neurophysiol, 30, 306-312.

Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., Lounasmaa, O. (1993). Magnetoencephalography--theory, instrumentation, and applications to noninvasive studies of the working human brain. Review of Modern Physics, 65, 413-497.

Hannon, E.E., Snyder, J.S., Eerola, T., & Krumhansl, C.L. (2004). The role of melodic and temporal cues in perceiving musical meter. J Exp Psychol Hum Percept Perform, 30, 956-974.

Hari, R., Hämäläinen, M., Ilmoniemi, R., Kaukoranta, E., Reinikainen, K., Salminen, J., Alho, K., Näätänen, R., & Sams, M. (1984). Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man. Neurosci Lett, 50, 127-132.

He, J., Hashikawa, T., Ojima, H., & Kinouchi, Y. (1997). Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci, 17, 2615-2625.

Henry, K.R. (1985). ON and OFF components of the auditory brainstem response have different frequency- and intensity-specific properties. Hear Res, 18, 245-251.

Jacobsen, T., Horenkamp, T., & Schröger, E. (2003). Preattentive memory-based comparison of sound intensity. Audiol Neurootol, 8, 338-346.

Jacobsen, T., & Schröger, E. (2001). Is there pre-attentive memory-based comparison of pitch? Psychophysiology, 38, 723-727.

Jacobsen, T., & Schröger, E. (2003). Measuring duration mismatch negativity. Clin Neurophysiol, 114, 1133-1143.

Kirmse, U., Ylinen, S., Tervaniemi, M., Vainio, M., Schröger, E., & Jacobsen, T. (2008). Modulation of the mismatch negativity (MMN) to vowel duration changes in native speakers of Finnish and German as a result of language experience. Int J Psychophysiol, 67, 131-143.

Korzyukov, O.A., Winkler, I., Gumenyuk, V.I., & Alho, K. (2003). Processing abstract auditory features in the human auditory cortex. Neuroimage, 20, 2245-2258.

Kujala, T., Myllyviita, K., Tervaniemi, M., Alho, K., Kallio, J., & Näätänen, R. (2000). Basic auditory dysfunction in dyslexia as demonstrated by brain activity measurements. Psychophysiology, 37, 262-266.

Kujala, T., Tervaniemi, M., & Schröger, E. (2007). The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biol Psychol, 74, 1-19.

Levänen, S., Ahonen, A., Hari, R., McEvoy, L., & Sams, M. (1996). Deviant auditory stimuli activate human left and right auditory cortex differently. Cereb Cortex, 6, 288-296.

Lin, Y.Y., Hsiao, F.J., Shih, Y.H., Yiu, C.H., Yen, D.J., Kwan, S.Y., Wong, T.T., Wu, Z.A., & Ho, L.T. (2007). Plastic phase-locking and magnetic mismatch response to auditory deviants in temporal lobe epilepsy. Cereb Cortex, 17, 2516-2525.

Maess, B., Jacobsen, T., Schröger, E., & Friederici, A.D. (2007). Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. Neuroimage, 37, 561-571.

Näätänen, R. (1992). Attention and brain function. Hillsdale, NJ: Lawrence Erlbaum Associates.
Näätänen, R., Alho, K. (1997). Higher-order processes in auditory-change detection. Trends in cognitive science, 1, 44-45.

Näätänen, R., Gaillard, A.W., & Mantysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst), 42, 313-329.

Näätänen, R., Jacobsen, T., & Winkler, I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiology, 42, 25-32.

Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol, 118, 2544-2590.

Näätänen, R., Paavilainen, P., Tiitinen, H., Jiang, D., & Alho, K. (1993). Attention and mismatch negativity. Psychophysiology, 30, 436-450.

Näätänen, R., Pakarinen, S., Rinne, T., & Takegata, R. (2004). The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol, 115, 140-144.

Nenonen, S., Shestakova, A., Huotilainen, M., & Näätänen, R. (2003). Linguistic relevance of duration within the native language determines the accuracy of speech-sound duration processing. Brain Res Cogn Brain Res, 16, 492-495.

Neuhaus, C., & Knosche, T.R. (2008). Processing of pitch and time sequences in music. Neurosci Lett, 441, 11-15.

Noda, K., Tonoike, M., Doi, K., Koizuka, I., Yamaguchi, M., Seo, R., Matsumoto, N., Noiri, T., Takeda, N., & Kubo, T. (1998). Auditory evoked off-response: its source distribution is different from that of on-response. Neuroreport, 9, 2621-2625.

Nordby, H., Hammerborg, D., Roth, W.T., & Hugdahl, K. (1994). ERPs for infrequent omissions and inclusions of stimulus elements. Psychophysiology, 31, 544-552.

Okazaki, S., Kanoh, S., Takaura, K., Tsukada, M., & Oka, K. (2006). Change detection and difference detection of tone duration discrimination. Neuroreport, 17, 395-399.

Opitz, B., Schröger, E., & von Cramon, D.Y. (2005). Sensory and cognitive mechanisms for preattentive change detection in auditory cortex. Eur J Neurosci, 21, 531-535.

Paavilainen, P., Alho, K., Reinikainen, K., Sams, M., & Näätänen, R. (1991). Right hemisphere dominance of different mismatch negativities. Electroencephalogr Clin Neurophysiol, 78, 466-479.

Paavilainen, P., Tiitinen, H., Alho, K., & Näätänen, R. (1993). Mismatch negativity to slight pitch changes outside strong attentional focus. Biol Psychol, 37, 23-41.

Picton, T.W., Woods, D.L., & Proulx, G.B. (1978). Human auditory sustained potentials. I. The nature of the response. Electroencephalogr Clin Neurophysiol, 45, 186-197.

Ritter, W., Vaughan, H.G., Jr., & Costa, L.D. (1968). Orienting and habituation to auditory stimuli: a study of short term changes in average evoked responses. Electroencephalogr Clin Neurophysiol, 25, 550-556.

Schröger, E., & Wolff, C. (1996). Mismatch response of the human brain to changes in sound location. Neuroreport, 7, 3005-3008.

Thompson, W.F., Hall, M.D., & Pressing, J. (2001). Illusory conjunctions of pitch and duration in unfamiliar tone sequences. J Exp Psychol Hum Percept Perform, 27, 128-140.

Umbricht, D., Vyssotki, D., Latanov, A., Nitsch, R., & Lipp, H.P. (2005). Deviance-related electrophysiological activity in mice: is there mismatch negativity in mice? Clin Neurophysiol, 116, 353-363.

Walker, L.J., Carpenter, M., Downs, C.R., Cranford, J.L., Stuart, A., & Pravica, D. (2001). Possible neuronal refractory or recovery artifacts associated with recording the mismatch negativity response. J Am Acad Audiol, 12, 348-356.

Woods, D.L., Alho, K., & Algazi, A. (1992). Intermodal selective attention. I. Effects on event-related potentials to lateralized auditory and visual stimuli. Electroencephalogr Clin Neurophysiol, 82, 341-355.

Woods, D.L., & Elmasian, R. (1986). The habituation of event-related potentials to speech sounds and tones. Electroencephalogr Clin Neurophysiol, 65, 447-459.

Ylinen, S., Shestakova, A., Huotilainen, M., Alku, P., & Näätänen, R. (2006). Mismatch negativity (MMN) elicited by changes in phoneme length: a cross-linguistic study. Brain Res, 1072, 175-185.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top