跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 04:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余彥
研究生(外文):Yen Yu
論文名稱:工作記憶的認知操弄迴路與其面對認知負荷之效應:針對健康受試者及躁鬱症疾患之大腦區域有效連結性探討
論文名稱(外文):Cognitive manipulation circuitry of working memory process and its load-related elicitation: Effective connectivity study for normal and euthymic bipolar subjects
指導教授:吳育德
指導教授(外文):Yu-Te Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:腦科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:48
中文關鍵詞:工作記憶蒼白核執行功能功能性磁振造影
外文關鍵詞:working memoryglobus pallidusexecutive functionfMRI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:402
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:1
Recent studies have turned their focus to the critical role of subcortical structure in human working memory system, especially in the executive aspect. Given previous investigations upon executive function mostly within cortical space, being less explored is that to what extent the association between cortical and subcortical correlates can be addressed. In this paper, we identified the activation of globus pallidus specific to high task load of a visual n-back working memory task. In light of recent ‘gating’ theory that argued striatal/pallidal functions in controlling information flow into the working memory. We reasoned that information was prone to be maintained in working memory under high workload due to the inhibitory role of globus pallidus. This in turn shed light on the implication that representational transformation, e.g., mentally repositioning successive imagery, in the manipulation task could take place in the service of maintaining goal-related memory trace, where subsidiary visual association cortices might contribute. Therefore, we performed a connectivity study using psychophysiologic interactions (PPI) and a putative approach similar to PPI. Our data suggested, in high load, various high-level visual association cortices were recruited under contextual pallidal modulations, representing the functionality of working memory slave system; while these regions stood a role differentiating and categorizing subtle visual stream, possibilities have shown a certain level of abstraction was carried out. Finally, we demonstrated the perplexing attributes of interactions of working memory slave system to the executive network, providing evidence in adjoining the maintenance role of globus pallidus with anatomical substrates underlining cognitive manipulation.
Abstract 1
I.Introduction 2
1.1.The Human Working Memory System and Its Cognitive Load 3
1.2.Central Executive and Basal Ganglia Functions 4
1.3.Bipolar Disorder and Executive Dysfunction 5
II.HC Study for Neural Connectivity Changes Subject to Load-Related Contextual Modulation 7
2.1.Materials and Methods 7
2.1.1.Participants 7
2.1.2.Image Acquisition 7
2.1.3.Activation Procedure 8
2.1.3.1.Cognitive paradigm and stimuli 8
2.1.3.2.Conditions 9
2.1.4.Data Analysis 9
2.1.4.1.1.Spatial and temporal preprocessing 9
2.1.4.2.fMRI statistical analysis 10
2.1.5.Effective Connectivity 11
2.1.5.1.Psychophysiologic interactions (PPI) 11
2.1.5.2.Contextual modulations derived by physiophysiologic interactions 13
2.2.Results 16
2.2.1.Behavioral Performance Data 16
2.2.2.WM-Load-Related Activation 17
2.2.3.Load-Dependent Contextual Recruitment Subjected to Globus Pallidus Modulations 18
2.2.4.Load-Dependent Modulation Derived by the Interaction of ITG and TOJ 20
2.3.Discussion 22
2.3.1.Recruitments of Globus Pallidus to the Manipulation of WM-Load 23
2.3.2.Functional Implications to the Connections between GP, ITG, TOJ and thalamus 24
2.3.3.Frontopolar Regions (Area 10) Interactions with the ITG-TOJ Integration 25
2.3.4.Behavioral Findings 27
2.3.5.Limitations 27
III.Study for HC vs. BD Differential Connectivity 28
3.1.Materials and Methods 28
3.1.1.Participants 28
3.1.2.Image Acquisition 28
3.1.3.Activation Procedure 29
3.1.3.1.Cognitive paradigm and stimuli 29
3.1.3.2.Conditions 30
3.1.4.fMRI Data Analysis 30
3.1.4.1.Spatial and temporal preprocessing 30
3.1.4.2.Statistical Mapping 31
3.1.5.Effective Connectivity 32
3.2.Results 34
3.2.1.Behavioral Performance Data 34
3.2.2.Working Memory Load-Related Activation in [GWML] 36
3.2.3.Working Memory Load-Related Activation in [PWML] 37
3.2.4.Difference in HC vs. BD Effective Connectivity 38
3.2.4.1.Regional responses subjected to contextual modulations from right inferior parietal cortex (IPC: HC>BD) 39
3.2.4.2.Regional responses subjected to contextual modulations from right rostrolateral prefrontal cortex (FPA: HC>BD) 41
3.3.Discussion 42
IV.General Discussion 44
V.References 45
VI.Appendix 48
Alexander, G. E., M. R. DeLong, et al. (1986). "Parallel organization of functionally segregated circuits linking basal ganglia and cortex." Annu Rev Neurosci 9: 357-81.
Baddeley, A. (1992). "Working memory." Science 255(5044): 556-9.
Baddeley, A. (2000). "The episodic buffer: a new component of working memory?" Trends Cogn Sci 4(11): 417-423.
Braver, T. S., J. D. Cohen, et al. (1997). "A parametric study of prefrontal cortex involvement in human working memory." Neuroimage 5(1): 49-62.
Chang, C., S. Crottaz-Herbette, et al. (2007). "Temporal dynamics of basal ganglia response and connectivity during verbal working memory." Neuroimage 34(3): 1253-69.
Christoff, K., K. Keramatian, et al. (2009). "Prefrontal organization of cognitive control according to levels of abstraction." Brain Res.
Christoff, K., V. Prabhakaran, et al. (2001). "Rostrolateral prefrontal cortex involvement in relational integration during reasoning." Neuroimage 14(5): 1136-49.
Corbetta, M. and G. L. Shulman (2002). "Control of goal-directed and stimulus-driven attention in the brain." Nat Rev Neurosci 3(3): 201-15.
Courtney, S. M. (2004). "Attention and cognitive control as emergent properties of information representation in working memory." Cogn Affect Behav Neurosci 4(4): 501-16.
Frank, M. J., B. Loughry, et al. (2001). "Interactions between frontal cortex and basal ganglia in working memory: a computational model." Cogn Affect Behav Neurosci 1(2): 137-60.
Friston, K. J. and C. Buchel (2000). "Attentional modulation of effective connectivity from V2 to V5/MT in humans." Proc Natl Acad Sci U S A 97(13): 7591-6.
Friston, K. J., C. Buechel, et al. (1997). "Psychophysiological and modulatory interactions in neuroimaging." Neuroimage 6(3): 218-29.
Friston, K. J., O. Josephs, et al. (1998). "Nonlinear event-related responses in fMRI." Magn Reson Med 39(1): 41-52.
Gross, C. G. (1972). Visual functions of inferotemporal cortex. Handbook of Sensory Physiology. R. Jung, Springer-Verlag: 451-482.
Hikosaka, O. and R. H. Wurtz (1983). "Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades." J Neurophysiol 49(5): 1230-53.
Just, M. A. and P. A. Carpenter (1992). "A capacity theory of comprehension: individual differences in working memory." Psychol Rev 99(1): 122-49.
Kircher, T. T., M. J. Brammer, et al. (2004). "Pausing for thought: engagement of left temporal cortex during pauses in speech." Neuroimage 21(1): 84-90.
Koechlin, E., G. Basso, et al. (1999). "The role of the anterior prefrontal cortex in human cognition." Nature 399(6732): 148-51.
Koechlin, E. and C. Summerfield (2007). "An information theoretical approach to prefrontal executive function." Trends Cogn Sci 11(6): 229-35.
Lancaster, J. L., M. G. Woldorff, et al. (2000). "Automated Talairach atlas labels for functional brain mapping." Hum Brain Mapp 10(3): 120-31.
McNab, F. and T. Klingberg (2008). "Prefrontal cortex and basal ganglia control access to working memory." Nat Neurosci 11(1): 103-7.
Middleton, F. A. and P. L. Strick (1994). "Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function." Science 266(5184): 458-61.
Middleton, F. A. and P. L. Strick (1996). "Basal ganglia and cerebellar output influences non-motor function." Mol Psychiatry 1(6): 429-33.
Middleton, F. A. and P. L. Strick (1996). "The temporal lobe is a target of output from the basal ganglia." Proc Natl Acad Sci U S A 93(16): 8683-7.
Miller, E. K. and J. D. Cohen (2001). "An integrative theory of prefrontal cortex function." Annu Rev Neurosci 24: 167-202.
Owen, A. M., K. M. McMillan, et al. (2005). "N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies." Hum Brain Mapp 25(1): 46-59.
Robinson, L. J. and I. N. Ferrier (2006). "Evolution of cognitive impairment in bipolar disorder: a systematic review of cross-sectional evidence." Bipolar Disord 8(2): 103-16.
Robinson, L. J., J. M. Thompson, et al. (2006). "A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder." J Affect Disord 93(1-3): 105-15.
Savitz, J. and W. C. Drevets (2009). "Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide." Neurosci Biobehav Rev 33(5): 699-771.
Sternberg, S. (1969). "Memory-scanning: mental processes revealed by reaction-time experiments." Am Sci 57(4): 421-57.
Talairach, J. and P. Tournoux (1988). Co-Planar Stereotaxic Atlas of the Human Brain, Thieme Medial Publisher.
Tanaka, K., H. Saito, et al. (1991). "Coding visual images of objects in the inferotemporal cortex of the macaque monkey." J Neurophysiol 66(1): 170-89.
Ungerleider, L. G. and M. Mishkin (1983). Two cortical visual systems. The Analysis of Visual Behavior. D. J. Ingle, M. H. Goodale and R. J. W. Mansfield, M.I.T. Press.
Van Essen, D. C., H. A. Drury, et al. (2001). "An integrated software suite for surface-based analyses of cerebral cortex." J Am Med Inform Assoc 8(5): 443-59.
Veltman, D. J., S. A. Rombouts, et al. (2003). "Maintenance versus manipulation in verbal working memory revisited: an fMRI study." Neuroimage 18(2): 247-56.
Wager, T. D. and E. E. Smith (2003). "Neuroimaging studies of working memory: a meta-analysis." Cogn Affect Behav Neurosci 3(4): 255-74.
Wallis, J. D., K. C. Anderson, et al. (2001). "Single neurons in prefrontal cortex encode abstract rules." Nature 411(6840): 953-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 第一型與第二型躁鬱症患者在血清素運轉子基因,血清素1B接受器基因與乙醛去氫酶2基因之間的交互作用
2. 躁鬱症主要照顧者因照顧患者所引發需要之探討
3. 躁鬱症患者的人格特質與其自我照顧能力,生活適應關係之研究─以中山醫學大學附設醫院樣本為例
4. 躁鬱症狀心理病理因素與相關情緒能力之探討
5. 多媒體教材在不同行動載具上的認知負荷與學習成效之研究-以高一地球科學「太空中的地球」為例
6. 瘦素受體基因多型性與躁鬱症患者服用情緒穩定劑引起代謝異常之關聯性研究
7. 以認知負荷理論探討不同文本呈現方式對國小高年級學生閱讀理解表現之影響:以表面積為例
8. 激發式動態呈現對學習成效與認知負荷影響之研究-以一元一次方程式為例
9. 多媒體文字訊息設計與學習者控制播放模式對學習成效、使用時間及認知負荷影響之研究
10. 以家庭為中心照護方式對躁鬱症病患與主要照顧者之健康狀態、照顧負荷及家庭功能成效探討:一個實驗性研究
11. 激發式動態教學對學習成效與認知負荷影響之研究-以浮力為例
12. 注意力在工作記憶中運作的神經機制
13. 焦慮情境下認知負荷型態對國小六年級學童數學解題活動之影響
14. 認知負荷取向電腦化動態評量效度議題探討:以三年級數與計算為例
15. 輔助資訊呈現方式應用在行動載具對學習成效與認知負荷之影響-以國二氧化還原反應為例