跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 04:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳佩琴
研究生(外文):Pei-Chin Chen
論文名稱:精神分裂症病患左右腦連結之神經完整性研究:運用機率性神經追蹤術定量胼胝體微細結構之變化
論文名稱(外文):Interhemispheric Connection of Schizophrenia: Study of the Corpus Callosum Using Probabilistic Tractography Based Parcellation
指導教授:林慶波林慶波引用關係
指導教授(外文):Ching-Po Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:擴散張量造影機率性神經追蹤術精神分裂症胼胝體分區法
外文關鍵詞:diffusion tensor imagingprobabilistic tractographyschizophreniacorpus callosumsubdivision
相關次數:
  • 被引用被引用:1
  • 點閱點閱:586
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:1
精神分裂症是一種非常普遍的精神疾病,其臨床上的症狀為幻聽、妄想、語言內容貧乏、認知功能受損及社交能力下降。目前認為精神分裂症為大腦結構及功能發生障礙之疾病,並且在許多研究中也證明患者在大腦兩側的溝通連結上有受損的現象。胼胝體為大腦中最大的白質神經纖維結構,其神經纖維會投射到不同的大腦皮質區,以負責左右腦之間的訊息傳遞。擴散張量造影是目前唯一以非侵入的方式重建神經纖維構造的技術,並可以利用其所產生的擴散張量指標係數(Diffusion tensor index)進一步量化大腦白質神經纖維的完整性及其細微的病理變化。

本研究中,我們將針對50 位精神分裂症患者及50 位正常受試者進行擴散張量磁振影,並使用機率性神經追蹤術,根據胼胝體神經纖維連結到不同的大腦皮質區的特性,建立新的胼胝體分區方法。並且計算出胼胝體各分區的部分非等向性擴散指標(Fractional Anisotropy, FA)、第一特徵值指標(First Eigen Value, FEV)及徑向擴散指標(Radial Diffusivity, RD)。利用上述之指標進行患者與正常受試者之間胼胝體神經纖維完整性之差異,以及探討臨床相關變數(患病時間長短、性別)所帶來的影響。

藉由機率性神經追蹤術及統計分析結果顯示精神分裂症患者在胼胝體之前額葉、前運動皮質區、後頂葉及枕葉的子區域其神經纖維完整性較正常受試者差。此外,胼胝體之前額葉子區域神經完整性與患病時間長短存在著非線性相關。並且我們進一步發現兩群組在性別上有不同的表徵。

本研究中,提供了精神分裂症患者於胼胝體神經纖維完整性缺損的量化證據,並且更進一步的指出患病時間長短以及性別所帶來的影響。此結果提供了精神分裂症患者在大腦兩側溝通連結功能低下的證據。
Schizophrenia is a mental disorder which the most common symptoms are hallucination, delusion and impairment in social cognition. Many studies have shown that schizophrenia patients might suffer from the impairments of interhemispheric information transfer. Corpus Callosum (CC) is the largest white matter (WM) structure which dominates the interhemispheric information transfer in the brain.Diffusion tensor imaging (DTI) provides a non-invasive method for visualization of WM pathways in human brain. Moreover, the DTI indices provide an quantitative method to examine the WM tracts integrity and subtle pathological changes.

DTI and structural MRI scans were obtained from 50 schizophrenia and 50 control subjects. Probabilistic tracking algorithm was used to obtain the CC topography since each portion of CC fibers connect to different brain cortices . Mean fractional anisotropy (FA),first eigen value (FEV), and radial diffusivity (RD) were compared on each callosal subdivision between the two groups. The relationships
between DTI indices and clinical variables, such as duration of illness, were investigated as well.

Compared with controls, decreased FA was found in the subdivions connecting to the prefrontal, premotor, posterior parietal, and occipital cortices in subjects with schizophrenia. Specifically, FA showed a non-linear correlation with the duration of illness in the subdivision connecting to the prefrontal cortex. In addition, the gender effect revealed different patterns in two groups.

This study provides a quantitative evidence for the reduction of inter-hemispheric brain connectivity in schizophrenia; meanwhile, the effects of duration of illness and gender were discussed. The finding may support the hypo-connectivity model of schizophrenia.
致謝 I
中文摘要 II
英文摘要 IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 研究主題 4
1.3 論文架構 5
第二章 理論基礎與文獻討論 6
2.1 擴散磁振造影原理 6
2.1.1 水分子之擴散運動 6
2.1.2 擴散核磁共振訊號之量測 8
2.1.3 擴散張量造影原理 13
2.1.4 擴散張量影像之量化指標. 16
2.2 擴散張量磁振造影之不確定性 19
2.2.1 擴散張量不確定性 19
2.2.2 局部性參數估計 20
2.2.3 全域性參數估計 25
2.3 精神分裂症之相關背景 28
2.3.1 精神分裂症診斷準則及其症狀 28
2.3.2 精神分裂症相關假說 31
2.4 胼胝體於精神分裂症研究之應用 33
2.4.1 胼胝體功能與其重要性 33
2.4.2 胼胝體於精神分裂症之文獻探討 35
2.4.3 胼胝體分區之重要性 38
第三章 研究材料與方法 40
3.1 臨床磁振造影實驗及影像處理之主要作業流程 40
3.2 精神分裂症患者與健康受試者之選取標準 41
3.3 臨床磁振造影掃描參數設定 43
3.4 影像處理 45
3.4.1 影像前處理 45
3.4.2 胼胝體與大腦皮質ROI 選取標準 47
3.4.3 胼胝體之分區方法 49
3.5 統計分析 51
第四章 結果與討論 52
4.1 胼胝體分區拓譜學 52
4.2 胼胝體神經纖維完整性分析 54
4.3 病人組神經纖維完整性與患病時間長短之相關性分析 60
4.4 胼胝體神經纖維完整性之性別差異分析 63
第五章 未來展望與結論 67
5.1 未來展望 67
5.2 結論 69
參考文獻 71
1. Pearlson, G.D. and L. Marsh, Structural brain imaging in schizophrenia: a selective review. Biol Psychiatry, 1999. 46(5): p. 627-49.
2. Guillin, O., A. Abi-Dargham, and M. Laruelle, Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol, 2007. 78: p. 1-39.
3. Coger, R.W. and E.A. Serafetinides, Schizophrenia, corpus callosum, and interhemispheric communication: a review. Psychiatry Res, 1990. 34(2): p.163-84.
4. Feinberg, I., Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res, 1982.17(4): p. 319-34.
5. Foong, J., et al., Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J Neurol Neurosurg Psychiatry, 2000. 68(2): p. 242-4.
6. Buchsbaum, M.S., et al., Diffusion tensor imaging in schizophrenia. Biol Psychiatry, 2006. 60(11): p. 1181-7.
7. Hubl, D., et al., Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry, 2004. 61(7): p. 658-68.
8. Ardekani, B.A., et al., MRI study of white matter diffusion anisotropy in schizophrenia. Neuroreport, 2003. 14(16): p. 2025-9.
9. Agartz, I., J.L. Andersson, and S. Skare, Abnormal brain white matter inschizophrenia: a diffusion tensor imaging study. Neuroreport, 2001. 12(10): p.2251-4.
10. Witelson, S.F., Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain, 1989. 112( Pt 3): p. 799-835.
11. Hofer, S. and J. Frahm, Topography of the human corpus callosum revisited--comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage, 2006. 32(3): p. 989-94.
12. Le Bihan, D., Molecular diffusion, tissue microdynamics and microstructure.NMR Biomed, 1995. 8(7-8): p. 375-86.
13. Callaghan, P.T., Principle of Nuclear Magnetic Resonance Microscopy.Oxford University Press, 1993.
14. Le Bihan, D., [Diffusion, perfusion and functional magnetic resonance imaging.]. J Mal Vasc, 1995. 20(3): p. 203-14.
15. Bloch, F., Nuclear induction. Physical Review, 1946. 70: p. 460-474.
16. Hahn, E.L., Spin echoes. Physical Review, 1950. 80: p. 580-594.
17. Torrey, H.C., Bloch equations with diffusion terms. Journal of Chemical Physics, 1956. 104: p. 563-565.
18. Stejskal, E.O. and J.E. Tanner, Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. The Journal of Chemical Physics, 1965. 42(1): p. 288-292.
19. G E Wesbey, M.E.M., and R L Ehman, Translational molecular self-diffusion in magnetic resonance imaging. II. Measurement of the self-diffusion coefficient. Invest Radiol, 1984. 19(6): p. 491–498.
20. G E Wesbey, M.E.M., and R L Ehman, Translational molecular self-diffusion in magnetic resonance imaging. I. Effects on observed spin-spin relaxation. Invest Radiol, 1984. 19(6): p. 491-498.
21. Le Bihan, D.a.B., E, Imagerie de diffusion in vivo par resonance magnetique nucleaire. CR Acad Sci Paris, 1985. 301: p. 1109-1112.
22. Basser, P.J. and D.K. Jones, Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed, 2002. 15(7-8): p.456-67.
23. Basser, P.J., J. Mattiello, and D. LeBihan, Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B, 1994. 103(3): p. 247-54.
24. Basser, P.J., J. Mattiello, and D. LeBihan, MR diffusion tensor spectroscopy and imaging. Biophys J, 1994. 66(1): p. 259-67.
25. Pierpaoli, C. and P.J. Basser, Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med, 1996. 36(6): p. 893-906.
26. Behrens, T.E., et al., Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci, 2003. 6(7): p.750-7.
27. Behrens, T.E., et al., Characterization and propagation of uncertainty indiffusion-weighted MR imaging. Magn Reson Med, 2003. 50(5): p. 1077-88.
28. Mori, S., et al., Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol, 1999. 45(2): p.265-9.
29. Basser, P.J., et al., In vivo fiber tractography using DT-MRI data. Magn Reson Med, 2000. 44(4): p. 625-32.
30. Crow, T.J., Molecular pathology of schizophrenia: more than one disease process? British Medical Journal, 1980. 280(6207): p. 66–68.
31. 孔繁鐘, DSM-IV 精神疾病統計診斷手冊. 1999: 合記圖書出版社.
32. Beaumont, J.G. and S.J. Dimond, Brain disconnection and schizophrenia. Br J Psychiatry, 1973. 123(577): p. 661-2.
33. Parnas J, B.P., Innocenti GM., Schizophrenic trait features, binding, andcortico-cortical connectivity: a neurodevelopmental pathogenetic hypothesis. Neurol Psychiatry Brain Res, 1996. 4: p. 185-196.
34. Pakkenberg, B., Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics.Arch Gen Psychiatry, 1990. 47(11): p. 1023-8.
35. Bigelow, L. and R. Rosenthal, Schizophrenia and the corpus callosum. Lancet, 1972. 1(7752): p. 694.
36. Woodruff, P.W., I.C. McManus, and A.S. David, Meta-analysis of corpus callosum size in schizophrenia. J Neurol Neurosurg Psychiatry, 1995. 58(4): p.457-61.
37. Highley, J.R., et al., The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain, 1999.122 ( Pt 1): p. 99-110.
38. Downhill, J.E., Jr., et al., Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr Res, 2000.42(3): p. 193-208.
39. Meisenzahl, E.M., et al., Corpus callosum size in schizophrenia--a magnetic resonance imaging analysis. Eur Arch Psychiatry Clin Neurosci, 1999. 249(6): p. 305-12.
40. Chua, S.E., et al., A magnetic resonance imaging study of corpus callosum size in familial schizophrenic subjects, their relatives, and normal controls.Schizophr Res, 2000. 41(3): p. 397-403.
41. Keshavan, M.S., et al., Development of the corpus callosum in childhood, adolescence and early adulthood. Life Sci, 2002. 70(16): p. 1909-22.
42. Goghari, V.M., et al., Smaller corpus callosum subregions containing motor fibers in schizophrenia. Schizophr Res, 2005. 73(1): p. 59-68.
43. Rotarska-Jagiela, A., et al., The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. Neuroimage, 2008. 39(4): p.1522-32.
44. Kanaan, R.A., et al., Tract-specific anisotropy measurements in diffusion tensor imaging. Psychiatry Res, 2006. 146(1): p. 73-82.
45. Price, G., et al., Abnormal brain connectivity in first-episode psychosis: a diffusion MRI tractography study of the corpus callosum. Neuroimage, 2007.35(2): p. 458-66.
46. Kay, S.R., A. Fiszbein, and L.A. Opler, The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull, 1987. 13(2): p. 261-76.
47. Mori, S., MRI Atlas of Human White Matter. 2005: Elsevier.
48. Beaulieu, C. and P.S. Allen, Determinants of anisotropic water diffusion in nerves. Magn Reson Med, 1994. 31(4): p. 394-400.
49. Song, S.K., et al., Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage, 2005. 26(1): p. 132-40.
50. Uranova, N.A., et al., Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res, 2004. 67(2-3): p. 269-75.
51. Hakak, Y., et al., Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA, 2001. 98(8): p. 4746-51.
52. Sullivan, E.V., E. Adalsteinsson, and A. Pfefferbaum, Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cereb Cortex, 2006. 16(7): p. 1030-9.
53. Aboitiz, F., et al., Age-related changes in fibre composition of the human corpus callosum: sex differences. Neuroreport, 1996. 7(11): p. 1761-4.
54. Bartzokis, G., P.H. Lu, and J. Mintz, Quantifying age-related myelin breakdown with MRI: novel therapeutic targets for preventing cognitive decline and Alzheimer's disease. J Alzheimers Dis, 2004. 6(6 Suppl): p.S53-9.
55. Woodruff, P.W., et al., Structural brain abnormalities in male schizophrenics reflect fronto-temporal dissociation. Psychol Med, 1997. 27(6): p. 1257-66.
56. Velakoulis, D., et al., Increased duration of illness is associated with reduced volume in right medial temporal/anterior cingulate grey matter in patients with chronic schizophrenia. Schizophr Res, 2002. 57(1): p. 43-9.
57. Kasai, K., et al., Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am J Psychiatry,2003. 160(1): p. 156-64.
58. Kasai, K., et al., Differences and similarities in insular and temporal pole MRI gray matter volume abnormalities in first-episode schizophrenia and affective psychosis. Arch Gen Psychiatry, 2003. 60(11): p. 1069-77.
59. Wright, I.C., et al., Meta-analysis of regional brain volumes in schizophrenia.Am J Psychiatry, 2000. 157(1): p. 16-25.
60. Kubicki, M., et al., Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatry, 2002. 159(5): p.813-20.
61. Kubicki, M., et al., Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biol Psychiatry, 2003.54(11): p. 1171-80.
62. Kuroki, N., et al., Fornix integrity and hippocampal volume in male schizophrenic patients. Biol Psychiatry, 2006. 60(1): p. 22-31.
63. Mori, T., et al., Progressive changes of white matter integrity in schizophrenia revealed by diffusion tensor imaging. Psychiatry Res, 2007. 154(2): p.133-45.
64. Wedeen, V.J., et al., Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med, 2005. 54(6): p.1377-86.
65. Tuch, D.S., Q-ball imaging. Magn Reson Med, 2004. 52(6): p. 1358-72.
66. Shenton, M.E., et al., A review of MRI findings in schizophrenia. Schizophr Res, 2001. 49(1-2): p. 1-52.
67. Flynn, S.W., et al., Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins.Mol Psychiatry, 2003. 8(9): p. 811-20.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊