跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 15:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊晴晴
研究生(外文):Ching-Ching Yang
論文名稱:利用蒙地卡羅模擬與影像重建最佳化小動物正子照影之定量精準度
論文名稱(外文):Monte Carlo Simulation and Image Reconstruction for Quantitative Positron Emission Tomography in Preclinical Animal Studies
指導教授:李俊信李俊信引用關係
指導教授(外文):Jason J.S. Lee
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:91
中文關鍵詞:小動物正子照影蒙地卡羅模擬定量分析
外文關鍵詞:Small Animal Positron Emission TomographyMonte Carlo SimulationQuantitative Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
小動物實驗用正子斷層掃描(PET)可避免傳統的侵入性組織採樣,因而可針對同一活體重複進行取樣,進而取得不同時間點下標的組織的代謝性影像。然而,由於受限於照影系統上偵檢器的技術與互毀光子的物理特性,PET成像品質主要取決於影像的統計雜訊。為了提升影像品質與量化精確度,可利用不同的資料擷取模式並搭配影像重建算法以抑制影像雜訊。本實驗的目的,即是利用資料擷取與重建法,來提升小動物實驗用PET的病灶偵測與量化精確度。
為了要最佳化這些資料處理技術的效力,首先我們針對一台配備磷光質層疊偵檢器(phoswich detector module)的小動物實驗用PET建立蒙地卡羅模擬平台。此模擬器精確的重現了照影系統的物理特性、幾何配置與訊號處理技術,並通過了系統靈敏度、空間解析度、散射分率與計數率等驗證測試。在本研究的第二部分,即利用了所建立的模擬器探討重合併法(rebinning method)對於成像品質的影響。重合併法是將三維PET的擷取資料轉換成二維PET的儲存型態以簡化影像重建的過程。我們發現經重合併法處理後的資料,其影像品質與量化精確度將受到軸向接收角與二維影像重建法的影響。研究結果並顯示,小動物實驗用PET系統所提供的病灶偵測與量化精確度將可經最佳化處理後有顯著的提升。
Small animal positron emission tomography (PET) is an imaging technique which allows non-invasive in vivo evaluation of molecular events in animal model of human disease. However, emission measurements are inherently noisy due to the limitations of the detection system and the physics underlying PET imaging. One primary method to reduce the resultant impacts on image quality and quantitative accuracy of PET data is to improve the strategy for image acquisition and reconstruction. This dissertation states and defends that the qualitative and quantitative capabilities of PET imaging can be significantly improved through the optimization of these techniques.
To evaluate and improve these developments under a well-controlled and calibrated condition, we established a Monte Carlo simulator for a dual layer phoswich system. The proposed detection model realistically described the physics of PET, the scanner configuration and the data collecting system of the modeled scanner. It successfully passed the sensitivity, spatial resolution, scatter fraction and count rate tests. Along with the scanner modeling, this research investigated the quantitative and qualitative capabilities of rebinned PET measurements by simulation. Rebinning is an approach transforming 3D mode data into 2D mode for simplifying image reconstruction for high sensitivity 3D PET scanner. For rebinned PET measurements, we found that the image quality and quantitative accuracy is highly affected by the range of axial acceptance angle and the applied 2D reconstruction algorithm. Our results also show that the lesion detection and quantification in small animal PET study can be significantly improved through protocol optimization.
CONTENTS....................................................................................................................i
FIGURES..................................................................................................................... iii
TABLE..........................................................................................................................vi
ACKNOWLEDGEMENTS.........................................................................................vii
CHAPTER 1﹕INTRODUCTION................................................................................1
1.1 Motivation.......................................................................................................1
1.2 Thesis Outline .................................................................................................4
CHAPTER 2﹕POSITRON EMISSTION TOMOGRAPHY .......................................6
2.1 Physics of PET................................................................................................6
2.2 PET Instrumentation .....................................................................................11
2.3 Image Reconstruction Methods ....................................................................16
2.4 Quantitative Analysis in PET Imaging..........................................................22
CHAPTER 3﹕AN EVALUATION PLATFORM FOR QUANTITATIVE SMALL
ANIMAL PET IMAGING...........................................................................................28
3.1 Monte Carlo Simulation in Emission Tomography ......................................28
3.2 Simulator Buildup.........................................................................................29
3.3 File Format and Data Organization...............................................................35
3.4 Simulator Verification ...................................................................................35
CHAPTER 4 ﹕ QUANTITATIVE AND QUALITATIVE CAPABILITIES OF
REBINNED PET MEASUREMENTS........................................................................51
ii
4.1 2D PET versus 3D PET ...................................................................................51
4.2 Rebinning Methods..........................................................................................53
4.3 FORE Algorithm..............................................................................................56
4.4 Optimizing Acquisition and Reconstruction Techniques.................................60
CHAPTER 5﹕CONCLUSION...................................................................................74
5.1 Summary .......................................................................................................74
5.2 Future Research ............................................................................................75
BIBLIOGRAPHY........................................................................................................76
[1] Muehllehner G, Karp JS. Positron emission tomography. Phys Med Biol 2006;51:R117-R137
[2] Tai Y, Laforest R. Instrumentation aspects of animal PET. Annu Rev Biomed Eng 2005;7:255-285
[3] Buvat I. Quantification in emission tomography: Challenges, solutions and performance. Nucl Instr and Meth A 2007;517:10-13
[4] Hoffman EJ, Huang S, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 1979;3:299-308
[5] Huang S, Hoffman EJ, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 2. Effect of inaccurate attenuation correction. J Comput Assist Tomogr 1979;3:804-814
[6] Huang S, Hoffman EJ, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 3. Effect of sampling. J Comput Assist Tomogr 1980;4:819-826
[7] Hoffman EJ, Huang S, Phelps ME. Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 1981;5:391-400
[8] Mazziotta JC, Hoffman EJ, Plummer D, Kuhl DE. Quantitation in positron emission computed tomography: 5. Physical-anatomical effects. J Comput Assist Tomogr 1981;5:734-743
[9] Hoffman EJ, Huang S, Plummer D, Phelps ME. Quantitation in positron emission computed tomography: 6. Effect of nonuniform resolution. J Comput Assist Tomogr 1982;6:987-999
[10] Casey ME, Phelps ME. Quantitation in positron emission computed tomography: 7. Technique to reduce noise in accidental coincidence measurements and coincidence efficiency calibration. J Comput Assist Tomogr 1986;10:845-850
[11] Karp JS, Kinahan PE and Mankoff DA. Positron emission tomography with a large axial acceptance angle: signal-to-noise considerations. IEEE Trans Med Imag 1991:10;249-255
[12] Kinahan PE, Karp JS. Figures of merit for comparing reconstruction algorithms with a volume-imaging PET scanner. Phys Med Biol 1994:39;631-642
[13] Boellaard R, von Lingen A and Lammertsma AA. Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. J Nucl Med 2001:42;808-817
[14] Belanger M, Mann JJ and Parsey RV. OS-EM and FBP reconstrcutions at low count rates: effect on 3D PET studies of [11C] WAY-100635. NeuroImage 2004:21; 244-250
[15] Reilhac A, Tomei S, Buvat I, Michel C, Keheren F and Costes N. Simulation-based evaluation of OSEM iterative reconstruction methods in dynamic brain PET studies. NeuroImage 2008:39;359-368
[16] Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine (3rd ed). Philadelphia, PA, Saunders, 2003, pp 325-359
[17] Zanzonico P. Positron emission tomography: a review of basics principles, scanner design and performance, and current systems. Semin Nucl Med 2004:34;87-111
[18] Bendriem B and Townsend DW. The theory and practice of 3D PET. Dordercht, The Netherlands, Kluwer Academic Publishers, 1998, pp 11-50
[19] Brooks RA, Chiro GD. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 1976;21:689-732
[20] Shepp L, Verdi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1982;MI-1(2):113-122
[21] Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 1995;13:601-609
[22] James F. Monte Carlo theory and practice. Rep Pro Phys 1980;43:1147-1188
[23] Zaidi H. Relevance of accurate Monte Carlo modeling in nuclear medical imaging. Med Phys 1999;26:574-608
[24] Buvat I, Gastiglioni I, Feuardent J, Gilardi M-C. Unified description and validation of Monte Carlo simulators in PET. Phy Med Biol 2005;50:329-346
[25] Buvat I, Gastiglioni I. Monte Carlo simulations in SPET and PET. Q J Nucl Med 2002;46:48-61
[26] Buvat I, Lazaro D. Monte Carlo simulations in emission tomography and GATE: An overview. Nucl Instr and Meth A 2006;569:323-329
[27] Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 2004;49:4543-4561
[28] Guez D, Bataille F, Comtat C, Honore P, Jan S, Kerhoas S. Counting rates modeling for PET scanners with GATE. IEEE Trans Nucl Sci 2008; 55:516-523
[29] Wang Y, Seidel J, Tsui BMW, Vaquero JJ, Pomper MG. Performance evaluation of the GE Healthcare eXplore VISTA dual-ring small-animal PET scanner. J Nucl Med 2006;47:1891-1900
[30] Schmidtlein CR, Kirov AS, Nehmeh SA, Erdi YE, Humm JL, Amols HI, et al. Validation of GATE Monte Carlo simulations of the GE Advance/Discovery LS PET scanners. Med Phy 2006;33:198-208
[31] Lamare F, Turzo A, Bizais Y, Cheze LeRest C, Visvikis D. Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET system using GATE. Phys Med Biol 2006;51:943-962
[32] Merheb C, Petegnoef Y, Talbot JM. Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code. Phys Med Biol 2007;563-576
[33] Jan S, Comtat C, Strul D, Santin G, Trebossen R. Monte Carlo simulation for the ECAT EXACT HR+ system using GATE. IEEE Trans Nucl Sci 2005;52:627-633
[34] Eriksson L, Wienhard K, Dahlbom M. A simple loss model for positron camera systems. IEEE Trans Nucl Sci 1994; 41:1566-1570
[35] Segars WP, Tsui BMW, Frey EC, Johnson A, Berr SS. Development of a 4D digital mouse phantom for molecular imaging research. Mol Imaging Biol 2004; 6:149-159
[36] Daube-Witherspoon ME and Muehllehner G. Treatment of axial data in three-dimensional PET. J Nuc Med 1987;28:1717-1724
[37] Lewitt RM, Muehllehner G and Karp JS. Three-dimensional image reconstruction for PET by multi-slice rebinning and axial image filtering. Phys Med Biol 1994;39:321-339
[38] Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M and Newport DF. Exact and approximated rebinning algorithms for 3-D PET data. IEEE Trans Med Imag 1997;16:145-158
[39] Liu X, Defrise M, Michel C, Sibomana M, Comtat C and Kinahan PE, Exact rebinning methods for three-dimentional PET. IEEE Trans Med Imag 1999;18:657-663
[40] Matej S, Karp JS, Lewitt RM and Becher AJ. Performance of the Fourier rebinning algorithm for PET with large acceptance angel. Phys Med Biol 1998:43;787-895
[41] Liu X, Comtat C, Michel C, Kinahan P, Defirse M, Comparison of 3-D reconstruction with 3D-OSEM and with FORE+OSEM for PET. IEEE Trans Med Imag 2001:20;804-814
[42] Fakhri GE, Santos PA, Badawi RD, Holdswroth CH, Van Den Abbeele AD, Kijewski MF. Impact f acquisition geometry, image processing and patient size on lesion detection in whole-body 18F-FDG PET. J Nucl Med 2007;48:1951-1960
[43] Lartizien C, Kinahan, PE, Comtat C. A lesion detection observer study comparing 2-dimentional versus fully 3-dimensional whole-body PET imaging protocols. J Nucl Med 2004;45:714-723
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top