跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:俞力平
研究生(外文):Li-Ping Yu
論文名稱:擴散光子對密度波在多重散射介質中的傳播特性之探討
論文名稱(外文):Properties of Diffuse Photon-Pairs Density Wave in Multiple Scattering Media
指導教授:周晟周晟引用關係
指導教授(外文):Chien Chou
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:118
中文關鍵詞:雙頻率雷射外差干涉線性極化光子對擴散光子對密度波同調偵測同調篩選偏極化篩選
外文關鍵詞:two-frequency laserheterodynelinearly polarization photon-pairsdiffuse photon-pairs density wavecoherence detectioncoherence gatingpolarization gating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出擴散光子對密度波(diffuse photon-pairs density wave, DPPDW)的理論,並以實驗證明DPPDW在多重散射介質中的傳播特性。DPPDW是線性極化光子對(linearly polarized photon-pairs, LPPP)在多重散射介質中所形成的光子能量密度波。光子對由雙頻率雷射光所產生,包含兩束在相位上高度相關且時間頻率不同(差頻為20MHz)的極化光波,當極化方向一致時,可在光偵檢器上產生外差干涉訊號。由於外差干涉訊號的偵測和光子對的同調與極化特性有關,因此光子對在散射介質中傳播時具有空間同調篩選(spatial coherence gating)與極化篩選(polarization gating)的能力,能降低散射效應;同時,光子對的共路徑傳播方式可降低共路徑的相位雜訊(common-path phase noise)。
實驗結果說明在均勻散射介質中,藉由測量DPPDW的振幅衰減與相位變化可精確地計算出介質的光學特性,例如:約化散射係(reduced scattering coeffient)與吸收係數(absorption coeffient);同時以約化散射係數的測量,討論系統對於葡萄糖濃度改變的靈敏度。另外,在不均勻散射介質中,以實驗說明DPPDW具有波的基本性質(例如繞射、散射與折射特性)和測量散射物體表面效應的能力。實驗結果皆與擴散理論一致,除了說明DPPDW滿足擴散方程式,也表示DPPDW在散射介質中具有偵測微小物體的能力。
本論文在近紅外光學影像的頻率域技術上提供一個新的測量方法。藉由外差干涉的同調偵測與光子對共路徑傳播的特性提高DPPDW在振幅訊號與相位訊號的訊雜比,提升測量約化散射係與吸收係數的精確度,並預期可改善近紅外光影像的空間解析度。
In this study, a novel theory we defined as Diffuse Photon-Pairs Density Wave (DPPDW) has been developed, and the behaviors of DPPDW in a homogeneous multiple scattering medium with and without an object embedded is verified in experiment. DPPDW is generated by correlated polarized photon-pairs of different temporal frequencies of the same polarized state in a multiple scattering medium. Since the heterodyne signal of polarized photon-pairs (PPP) can be associated with coherent and polarization detection. Therefore, DPPDW with spatial coherence gating and polarization gating is able to suppress the severe scattered photons in a multiple scattering medium. Meanwhile, the detection of common-path propagation of PPP in a multiple scattering medium provides common phase noise rejection via heterodyne detection.
In a homogeneous scattering medium, both reduced scattering coefficient and absorption coefficient have been obtained in terms of the measured phase delay and amplitude attenuation of DPPDW. The detection sensitivity of reduced scattering coefficient versus glucose concentration is analyzed and discussed. In the homogeneous medium, the basic optics of DPPDW such as diffraction, scattering and refraction and surface effect of a scattering object is demonstrated experimentally. The results show high detection sensitivity of DPPDW to small perturbation in the multiple scattering medium.
DPPDW is a new way of generating a photon density wave by coherent modulated source. The sensitivity to both amplitude reduction and phase delay of DPPDW has been improved by the features of coherent detection and common-path propagation of PPP in a multiple scattering medium. Spatial resolution improvment of imaging a multiple scattering medium with the developed DPPDW method is anticipated.
中文摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1. 背景 1
1.2. 光與組織的交互作用 7
1.3. 生物組織的光學的特性 9
1.4. 測量光學特性的偵測技術 13
1.4.1. 連續波 13
1.4.2. 時間域 13
1.4.3. 頻率域 14
2. 理論 17
2.1. 傳播方程式到擴散方程式 17
2.2. 擴散方程式在均勻無窮邊界條件下的解 21
2.3. 擴散方程式在均勻半無窮邊界條件下的解 23
2.4. 擴散光子對密度波 24
2.5. 擴散方程式對球狀物體的解析解 33
3. 擴散光子對密度波系統架設 38
3.1. 系統架設 38
4.2. 系統表現 40
3.2. Zeeman雙頻率雷射頭 44
3.3. Zygo雙頻率雷射頭 46
3.4. 鎖相放大器原理 49
3.5. Intralipid多重散射介質溶液 51
4. 擴散光子對密度波在均勻的多重散射介質中的傳播特性 55
4.1. 波前輪廓 55
4.2. 振幅與相位隨傳播距離的變化 57
4.3. 拍頻1.69 MHz與拍頻20 MHz的比較 60
4.4. Intralipid體積濃度的改變對光學特性的影響 64
4.5. 甲基藍體積濃度的改變對光學特性的影響 66
4.6. 小結 67
5. 葡萄糖濃度變化對散射特性的影響 69
5.1. 葡萄糖濃度的改變與約化散射係數變化之間的關係 70
5.2. 測量系統對於葡萄糖濃度改變的靈敏度 73
6.3. 增加吸收特性對於測量葡萄糖濃度改變的影響 76
5.4. 小結 78
6. 擴散光子對密度波在非均勻多重散射介質中之傳播特性 80
6.4. 擴散光子對密度波的繞射性質 81
6.5. 擴散光子對密度波的散射性質 84
6.6. 擴散光子對密度波的折射性質 86
6.7. 小結 88
7. 在多重散射介質中測量微小散射物體的表面效應 90
7.4. 體積效應與表面效應 92
7.5. 微小散射物體的表面效應 99
7.6. 小結 104
8. 討論與結論 106
參考文獻 110
1. B. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philosophical Transactions of the Royal Society B: Biological Sciences 352, 661 (1997).
2. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy(NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults," Neuroscience letters 154, 101-104 (1993).
3. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," PHYSICS IN MEDICINE AND BIOLOGY 46, 1117-1130 (2001).
4. S. Thomsen, and D. Tatman, "Physiological and Pathological Factors of Human Breast Disease That Can Influence Optical Diagnosis a," Annals of the New York Academy of Sciences 838, 171-193 (1998).
5. K. Konig, "Multiphoton microscopy in life sciences," Journal of Microscopy 200, 83-104 (2000).
6. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Applied optics 37, 1982-1989 (1998).
7. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
8. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, "Noninvasive functional optical spectroscopy of human breast tissue," Proceedings of the National Academy of Sciences, 71511098 (2001).
9. A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," Journal of Biomedical Optics 7, 60 (2002).
10. S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proceedings of the National Academy of Sciences of the United States of America 100, 12349-12354 (2003).
11. C. Li, and H. Jiang, "Measurement of particle-size distribution and concentration in heterogeneous turbid media with multispectral diffuse optical tomography," Applied optics 44, 1838-1844 (2005).
12. X. Wang, B. W. Pogue, S. D. Jiang, H. Dehghani, X. M. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography," Journal of Biomedical Optics 11, 041106 (2006).
13. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: Approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23 (2004).
14. Y. Yamashita, A. Maki, and H. Koizumi, "Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy-, and total-hemoglobin concentration," Medical Physics 28, 1108 (2001).
15. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, "Diffuse optical tomography with spectral constraints and wavelength optimization," Applied optics 44, 2082-2093 (2005).
16. B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, "Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions," Proceedings of the National Academy of Sciences of the United States of America 90, 3423-3427 (1993).
17. Y. Chen, C. Mu, X. Intes, and B. Chance, "Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source," Optics Express 9, 212-224 (2001).
18. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, "Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proceedings of the National Academy of Sciences 103, 8828-8833 (2006).
19. B. A. Brooksby, H. Dehghani, B. W. Poque, and K. D. Paulsen, "Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: Algorithm development for reconstructing heterogeneities," IEEE Journal on Selected Topics in Quantum Electronics 9, 199-209 (2003).
20. L. Wang, S. Jacques, and X. Zhao, "Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media," Optics Letters 20, 629-631 (1995).
21. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnology 21, 803-806 (2003).
22. D. J. Hawrysz, and E. M. Sevick-Muraca, "Developments toward diagnostic breast cancer imaging using neer-infrared optical measurements and fluorescent contrast agents," Neoplasia 2, 388-417 (2000).
23. X. Li, B. Chance, and A. G. Yodh, "Fluorescent heterogeneities in turbid media: Limits for detection, characterization, and comparison with absorption," Applied optics 37, 6833-6844 (1998).
24. V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," (National Acad Sciences, 2000), pp. 2767-2772.
25. S. Wan, J. Parrish, R. Anderson, and M. Madden, "Transmittance of nonionizing radiation in human tissues," Photochemistry and Photobiology 34, 679-681 (1981).
26. S. Arridge, and W. Lionheart, "Nonuniqueness in diffusion-based optical tomography," Optics Letters 23, 882-884 (1998).
27. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977).
28. S. R. Arridge, "Photon-measurement density functions. Part I: Analytical forms," Appl.Opt 34, 7395-7409 (1995).
29. S. Matcher, C. Elwell, C. Cooper, M. Cope, and D. Delpy, "Performance comparison of several published tissue near-infrared spectroscopy algorithms," Analytical biochemistry 227, 54-68 (1995).
30. D. Grosenick, K. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Applied optics 42, 3170-3186 (2003).
31. J. Selb, J. Stott, M. Franceschini, A. Sorensen, and D. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," Journal of Biomedical Optics 10, 011013 (2005).
32. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Review of Scientific Instruments 69, 3457 (1998).
33. B. J. Tromberg, L. O. Svaasand, T. t. Tsay, and R. C. Haskell, "Properties of photon density waves in multiple scattering media," Applied optics 32, 607-616 (1993).
34. S. R. Arridge, M. Cope, and D. T. Delpy, "The theoretical basis for the determination of optical pathlengths in tissue: Temporal and frequency analysis," PHYSICS IN MEDICINE AND BIOLOGY 37, 1531-1560 (1992).
35. M. Schweiger, and S. Arridge, "Application of temporal filters to time resolved data in optical tomography," PHYSICS IN MEDICINE AND BIOLOGY 44, 1699-1718 (1999).
36. A. Ishimaru, "Theory and application of wave propagation and scattering in random media," in Proceedings of the IEEE(1977), pp. 1030- 1061.
37. A. Ishimaru, "Diffusion of Light in Turbid Material," Applied Optics 28, 2210-2215 (1989).
38. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
39. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, and A. Darzi, "Diffuse optical imaging of the healthy and diseased breast: A systematic review," Breast cancer research and treatment 108, 9-22 (2008).
40. M. Cope, "The application of near-infrared spectroscopy to non-invasive monitoring of cerebral oxygenation in the newborn infant," (University College London, 1991).
41. J. Fishkin, S. Fantini, M. Vandeven, and E. Gratton, "Gigahertz photon density waves in a turbid medium: Theory and experiments," Physical Review E 53, 2307-2319 (1996).
42. J. B. Fishkin, and E. Gratton, "Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge," Journal of the Optical Society of America A: Optics and Image Science, and Vision 10, 127-140 (1993).
43. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. McAdams, "Boundary-Conditions for the Diffusion Equation in Radiative-Transfer," Journal of the Optical Society of America A-Optics Image Science and Vision 11, 2727-2741 (1994).
44. T. Farrell, M. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Medical Physics 19, 879 (1992).
45. K. Petermann, Laser diode modulation and noise (Springer, 1991).
46. A. Van der Ziel, "Noise in solid-state devices and lasers," Proceedings of the IEEE 58, 1178-1206 (1970).
47. S. Cohen, "Heterodyne detection: phase front alignment, beam spot size, and detector uniformity," Applied optics 14, 1953-1959 (1975).
48. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, "Quantitative-Determination of the Absorption-Spectra of Chromophores in Strongly Scattering Media - A Light-Emitting-Diode Based Technique," Applied optics 33, 5204-5213 (1994).
49. E. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, "Quantitation of time-and frequency-resolved optical spectra for the determination of tissue oxygenation," Analytical biochemistry 195, 330-351 (1991).
50. P. N. Den Outer, T. M. Nieuwenhuizen, and A. Lagendijk, "Location of objects in multiple-scattering media," Journal of the Optical Society of America A: Optics and Image Science, and Vision 10, 1209-1218 (1993).
51. S. Feng, F. A. Zeng, and B. Chance, "Photon migration in the presence of a single defect: a perturbation analysis," Applied optics 34, 2826-3837 (1995).
52. D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, "Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: Analytic solution and applications," Proc. Natil. Acad. Sci. USA 91, 4887-4891 (1994).
53. SR844 RF Lock-In Amplifier Operating Manual Programming Reference (Stanford Research Systems).
54. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, "Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy," Review of Scientific Instruments 71, 2500-2513 (2000).
55. Y. Chen, X. Intes, S. Zhou, C. Mu, M. J. Holboke, A. G. Yodh, and B. Chance, "Detection sensitivity and optimization of a phased-array system," Proceedings of SPIE 4250, 211 (2001).
56. NL lock-in amplifier start-up kit user manual (National Instruments).
57. S. L. Jacques, "Optical properties of "IntralipidTM", an aqueous suspension of lipid droplets," (1998), http://omlc.ogi.edu/spectra /intralipid/index.html.
58. H. J. Van Staveren, C. J. M. Moes, J. Van Marle, S. A. Prahl, and J. C. Van Gemert, "Light scattering in intralipid-10% in the wavelenght range of 400-1100 nm," Applied optics 30, 4507-4514 (1991).
59. S. Flock, S. Jacques, B. Wilson, W. Star, and M. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers in Surgery and Medicine 12, 510-519 (1992).
60. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. Demul, J. Greve, and M. H. Koelink, "Reduced Light-Scattering Properties for Mixtures of Spherical-Particles - A Simple Approximation Derived from Mie Calculations," Applied Optics 31, 1370-1376 (1992).
61. C. Moes, M. van Gemert, W. Star, J. Marijnissen, and S. Prahl, "Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm," Applied optics 28, 2292-2296 (1989).
62. T. Xu, C. Zhang, X. Wang, L. Zhang, J. Tian, T. Models, I. Phantoms, and R. Scattering, "Measurement and analysis of light distribution in intralipid-10% at 650 nm," Applied optics 42, 5777-5784 (2003).
63. S. Prahl, "Optical absorption of methylene blue," http://omlc.ogi.edu /spectra/mb/.
64. D. C. Klonoff, "Noninvasive blood glucose monitoring," Diabetes Care 20, 433-437 (1997).
65. L. Heinemann, and G. Schmelzeisen-Redeker, "Non-invasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors," Diabetologia 41, 848-854 (1998).
66. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Bocker, "Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient," Optics Letters 22, 190-192 (1997).
67. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, "Possible correlations between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared," Optics Letters 19, 2062-2064 (1994).
68. M. Kohl, M. Essenpreis, and M. Cope, "The influence of glucose concentration upon the transport of light in tissue-simulating phantoms," Physics in Medicine and Biology 40, 1267-1287 (1995).
69. M. Kohl, M. Cope, M. Essenpreis, and D. Bocker, "Influence of glucose concentration on light scattering in tissue-simulating phantoms," Optics Letters 19, 2170-2172 (1994).
70. L. Heinemann, U. Kramer, H. Klotzer, M. Hein, D. Volz, M. Hermann, T. Heise, and K. Rave, "Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests," Diabetes Technology & Therapeutics 2, 211-220 (2000).
71. O. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, "Use of an agent to reduce scattering in skin," Lasers in Surgery and Medicine 24, 133-141 (1999).
72. B. Choi, L. Tsu, E. Chen, T. S. Ishak, S. M. Iskandar, S. Chess, and J. S. Nelson, "Determination of chemical agent optical clearing potential using in vitro human skin," Lasers in Surgery and Medicine 36, 72-75 (2005).
73. J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, "Collagen solubility correlates with skin optical clearing," Journal of Biomedical Optics 11 (2006).
74. A. T. Yeh, and J. Hirshburg, "Molecular interactions of exogenous chemical agents with collagen - implications for tissue optical clearing," Journal of Biomedical Optics 11 (2006).
75. H. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity (Journal Paper)," Journal of Biomedical Optics 1, 200-211.
76. B. Chance, H. Liu, T. Kitai, and Y. Zhang, "Effects of solutes on optical properties of biological materials: Models, cells, and tissues," Analytical Biochemistry 227, 351-362 (1995).
77. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, "Noninvasive monitoring of glucose concentration with optical coherence tomography," Optics Letters 26, 992-994 (2001).
78. M. A. Arnold, and G. W. Small, "Noninvasive glucose sensing," Analytical Chemistry 77, 5429-5439 (2005).
79. R. LaFreniere, F. Ashkar, and A. Ketcham, "Infrared light scanning of the breast," Am. Surg 52, 123–128 (1986).
80. D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, "Scattering and wavelength transduction of diffuse photon density wave," Physical Review E 47, R29999 (1993).
81. S. A. Walker, E. Gratton, and D. A. Boas, "Photon density waves scattered from cylindrical inhomogeneities: Theory and experiments," Applied optics 37, 1935-1944 (1998).
82. J. Schmitt, A. Knuttel, and J. Knutson, "Interference of diffusive light waves," Journal of the Optical Society of America A 9, 1832-1843 (1992).
83. D. A. Boas, "Calculating the scattering of diffuse photon density waves from simple inhomogeneities," http://omlc.ogi.edu/software /density/.
84. M. R. Ostermeyer, and S. L. Jacques, "Perturbation theory for diffuse light transport in complex biological tissues," Journal of the Optical Society of America A: Optics and Image Science, and Vision 14, 255-261 (1997).
85. A. Sassaroli, F. Martelli, and S. Fantini, "Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. I. Theory," Journal of the Optical Society of America A-Optics Image Science and Vision 23, 2105-2118 (2006).
86. M. A. O'Leary, "Imaging with diffuse photon density waves," (University of Pennsylvania, 1996).
87. L. McNeil, and R. French, "Multiple scattering from rutile TiO2 particles," Acta Materialia 48, 4571-4576 (2000).
88. D. A. Boas, "Diffuse photon probes of structural and dynamical properties of turbid media: Theory and biomedical applications," (University of Pennsylvania, 1996).
89. A. V. D. Ziel, "Noise in solid-state devices and laser " Proc. IEEE 58, 1178-1206 (1970).
90. J. J. Snyder, "Wide dynamic range optical power measurement using coherent heterodyne radiometry," Appl. Opt 27, 27-21 (1988).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top