跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 10:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡若婷
研究生(外文):Jo-Ting Tsai
論文名稱:顱外立體定位放射線手術治療之全面性品質保證
論文名稱(外文):COMPREHENSIVE QUALITY ASSURANCE FOR EXTRACRANIAL STEREOTACTIC RADIOSURGERY TREATMENT
指導教授:朱唯勤朱唯勤引用關係
指導教授(外文):Woei-Chyn Chu
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:156
中文關鍵詞:品質保證立體定位放射線手術
外文關鍵詞:Quality assurancestereotactic radiosurgery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
立體定位放射線手術與傳統放射線治療最大之差異,在於立體定位放射線手術治療之治療次數少,或為單次治療,所以高可信度之放射治療計劃及治療系統是極為重要的。 品質保證對於放射線手術治療是很重要的,尤其對於系統高複雜度及在臨床廣泛被運用的電腦刀治療系統更為必要,這樣才能確保放射線劑量投予時之高準確度。
於本研究中,我們規劃了一套對於電腦刀立體定位放射線手術系統的全面性品質保質方法。 我們使用了多種放射線劑量測量計,包括了游離腔,熱發光劑量計,玻璃劑量計,MD 55膠片劑量計和自行研發之高分子聚合劑量計等,用來量測多項重要的放射線品質保證參數。 主要量測的是放射線劑量及定位之準確度,包括了點劑量,放射線射束之輸出因子和劑量校正,劑量輸出之再現性,線性度及一致性。 我們也利用假體來模擬電腦刀於臨床使用時的治療追踪定位系統,測試其準確度。
本研究所用之方法結果呈現出電腦刀系統無論在劑量之準確度,劑量之檢測之線性度及一致性都有好的結果,分析其變異系數都小於3%。 對於治療定位追踪及劑量分佈之研究,使用頭骨定位系統,X-sight脊椎定位系統或呼吸同步追踪系統都呈現有高度準確性。
總結本研究中使用之立體定位放射手術治療全面性品質保證方法,可運用在顱內及顱外之立體定位放射線手術系統,提供高精準度之品質評估。
關鍵字: 品質保證 ,立體定位放射線手術
Unlike conventional radiation therapy, the entire radiation dose of stereotactic radiosurgery is delivered in one, or a very limited number of treatments. Therefore, reliability of radiation planning system and treatment delivery system is imperative. While routine quality assurance (QA) is essential for any radiosurgery system, QA plays an even more vital role for the Cyberknife system, due to the complexity of the system and the wide range of applications. In particular, it is critical for assuring the accuracy of radiation dose targeting.
In this study, we presented the comprehensive quality assurance program for narrow photon beams used in CyberKnife stereotactic radiosurgery system. Different radiation dosimeters were used, including ion chamber, thermoluminescence dosimeters, glass dosimeters, MD 55 radiochromic films and the in-house developed polymer gel dosimeters. Various important QA parameters were measured for dose and positioning accuracy verification evaluation. The point dose, beam output factor and dose calibration, output reproducibility, dose linearity and constancy were tested with the above dosimeters. We also simulated the clinical applications of different tracking systems of CK with phantoms and tested for the accuracy of the systems.
Our study results showed good dose accuracy, measurement linearity and constancy of the CyberKnife system with CV value < 3%. For the target tracking and dose distribution studies for skull tracking, X-sight spine and Synchrony Respiratory tracking system all presented with high degree of accuracy.
In conclusion, our comprehensive quality assurance program is useful with high precision for both intracranial and extracranial stereotactic radiosurgery treatment system quality assessment. This approach, which is routinely in used at our institution, had repeatedly confirmed the submillimeter targeting accuracy of our Cyberknife.

Key words: Quality assurance, stereotactic radiosurgery
論文電子檔著作權授權書

論文審定同意書

Acknowledgement

Table of Content

List of figures

List of tables

摘要…………………………………………………………………….....1

ABSTRACT…………………………………………………………,…...2

CHAPTER.1…………………………………………………………………4

A Brief Introduction to Radiation Therapy

1.1 The Early Development of Radiotherapy……………………..4

1.2 Electron Accelerators and Teletherapy Machine…………..5

1.3 Radiotherapy requires conformal treatment……………...6

1.4 Review of Stereotactic Radiosurgery System………………8

CHAPTER.2………………………………………………………………13

CyberKnife Radiosurgery System

CHAPTER.3………………………………………………………………18

Radiation Dosimeter

3.1 Introduction……………………………………………………………18

3.2 Properties of Dosimeters………………………………………………………………19

3.3 Dosimeter for Radiosurgery System…………………………22

CHAPTER.4………………………………………………………………25

Thermoluminescent Dosimeters

4.1 Introduction ……………………………………………………25

4.2.Basic physical principles of TL dosimeter………………26

4.3 TLD system…………………………………………………………29

CHAPTER.5………………………………………………………………32

Film Dosimetry

5.1 Introduction…………………………………………………….32

5.2 Radiochromic film………………………………………………34

CHAPTER.6………………………………………………………………37

Gel dosimetry

6.1 Introduction of gel dosimetry………………………………37

6.2 Fricke Gels dosimetry…………………………………………39

6.3 Polymer Gels dosimetry…………………………………………46

CHAPTER.7…………………………………………………………….50

Materials and Methods

7.1 Ion Chamber Dosimeter…………………………………………50

7.1.1 CyberKnife Point Dose Measurement with Ion Chamber…51

7.1.2 CyberKnife Relative Output Factors Calibration with
Ion chamber ……………………………………………………………53

7.2 Thermoluminesce Dosimeters (TLD)……………………………56

7.2.1 TL system………………………………………………………57

7.2.2 TLD Annealing…………………………………………………57

7.2.3 TLD Reading……………………………………………………58

7.2.4 TLD calibration………………………………………………60

7.2.5 CyberKnife Point Dose Measurement with TLD……………61

7.2.6 CyberKnife Relative Output Factors Measurement
with TLD…………………………………………………………………62

7.3 Glass Dosimeter…………………………………………………64

7.4 Film Dosimeter…………………………………………………68

7.4.1 Film Dose measurement ………………………………………68

7.4.2 CyberKnife Relative Output Factors Measurement
with Film ………………………………………………………………70

7.4.3 Film Calibration.……………………………………………70

7.4.4 Film scanning and analysis…………………………………70

7.4.5 CyberKnife Plan Dose Verification with Film…………72

7.5 Polymer Gel Dosimeter…………………………………………75

7.5.1 In-house Equipment…………………………………………75

7.5.2 General n-NIPAM gel preparation procedure……………75

7.5.3 Head Phantom for Gel Irradiation…………………………79

7.5.4 CyberKnife Dose Verification………………………………81

7.5.5 Reactions of Polymer gel……………………………………84

7.5.6 MR Imaging of Polymer Gel…………………………………85

7.5.7 Mathematical models for MR dose calculation …………90

7.5.8 Gel calibration………………………………………………91

7.6 Accuracy of Synchrony Respiratory Tracking System……98

7.6.1Generate phantom treatment plan……………………………98

7.6.2 Phantom set up…………………………………………………99

7.6.3 Phantom motion tracking irradiation……………………100

7.6.4 Film Analysis…………………………………………………104

7.6.5 Clinical Verification of Synchrony Respiratory Tracking ………………………………………………………………105

7.7 X-sight Tracking Alignment Accuracy………………………106

7.7.1 Anthropomorphic Phantom Study……………………………106

7.7.2 Film dosimeter………………………………………………109

7.7.3 Analysis………………………………………………………110

CHAPTER.8………………………………………………………………111
Result

8.1 Ion Chamber Dosimeter…………………………………………111

8.2.Thermoluminesce Dosimeters (TLD)…………………………112

8.2.1 Dose Linearity of the TLD-100……………………………112

8.2.2 Point Dose Measurement with TLD…………………………113

8.2.3 CyberKnife Output Factors Measurement with TLD ……114

8.3 Glass Dosimeter (GD)…………………………………………117

8.3.1 Dose Reproducibility of the GD-320M……………………117

8.3.2 Dose Linearity of the GD-320M……………………………118

8.3.3 Point Dose Measurement with GD…………………………118

8.4 Film dosimeter (MD-55 film)....................................................119

8.4.1 Dose Measurement with MD-55 film………………………119

8.4.2 Dose Calibration of MD-55 Film…………………………121

8.4.3 CyberKnife Plan Dose Verification with Film………123

8.5 Gel Dosimeter (n-NIPAM gel).........................127

8.5.1 MR imaging parameter and customization………………127

8.5.2 Dose Reproducibility of the n-NIPAM Gel………………128

8.5.3 Linearity of the Calibration Curve of the n-NIPAM Gel………………………………………………………………………129

8.5.4 CyberKnife Plan Dose Verification with n-NIPAM Gel131

8.6 Accuracy of Synchrony Respiratory Tracking System …136

8.7 Clinical Verification of Synchrony Respiratory Tracking.…………………………………………………………………………141

8.8 X-sight Tracking Alignment Accuracy………………………144

CHAPTER.9………………………………………………………………147

Discussion……………………………………………………………147

Future works……………………………………………………………………148

CHAPTER.10……………………………………………………………150

Reference………………………………………………………………150
1.Leksell L: Sterotaxic radiosurgery in trigeminal neuralgia. Acta Chirurgica Scandinavica1971;137:311–314.
2.Fabrikant JI, Lyman JT, Hosobuchi Y: Stereotactic heavy-ion Bragg peak radiosurgery for intracranial vascular disorders: method for treatment of deep arteriovenous malformations. Br J Radiol 1984;57:479–490.
3.Fabrikant JI, Lyman JT, Frankel KA: Heavy charged-particle Bragg peak radiosurgery for intracranial vascular disorders. Radiat Res Suppl 1985;8:S244–S25.
4.Harsh G, Loeffler JS, Thornton A, Smith A, Bussiere M, Chapman PH: Stereotactic proton radiosurgery. Neurosurg Clin N Am 1999;10:243–256.
5.Lutz W, Winston KR, Maleki N: A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 1988;14:373–381.
6.Loeffler JS, Alexander E 3rd, Siddon RL, Saunders WM, Coleman CN, Winston KR: Stereotactic radiosurgery for intracranial arteriovenous malformations using a standard linear accelerator. Int J Radiat Oncol Biol Phys 1989;17:673–677.
7.Adler, J.R., Chang, S.D. and Murphy, M.J. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 1997; 69:124- 128,.
8.Chang, S.D., Main, W. and Martin, D.P. A robotic frameless stereotactic radiosurgical system. Neurosurgery. 2003;52:140-147.
9.Cheung, P.C., Sixel, K.E. and Tirona, R. Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC). Int J Radiat Oncol Biol Phys. 2003;57(5):1437-1442.
10.Dieterich, S. and Pawlicki, T. CyberKnife image-guided delivery and quality assurance. Int Radiation Oncology Biol Phys. 2008;71(1):S126-130.
11.Daniel A. Low &William B. Harms, A technique for the quantitative evaluation of dose distributions, Med. Phys. 1998;25(5):656-661.
12.AAPM Report 55 radiation treatment planning dosimetry verification, Radiation Therapy Committee Task Group #23. Editors: Miller, D., American Institute of Physics, College Park, MD,1995.
13.W. B. Harms &D. A. Low, A quantitative software analysis tool for verifying 3D dose-calculation programs, Int. J. Radiat. Oncol. Biol. Phys. 1994; 30:187.
14.Uchrin, G. and Ranogajec-Komor, M.: Termoluminescence Dosimetry, in Ionizing Radiation, Protection and Dosimetry, CRC Press, Boca Raton, Florida 1988;123-132.
15.Nakajima, T., Murayama, Y., Matsuzawa, T. and Koyano, A.: Development of a New Highly Sensitive LiF Thermoluminescence Dosimeter and its Application, Nucl. Instr. and Meth. 1978;157, 155-162.
16.Fujio Araki, Nobuyuki Moribe, Toshiaki Shimonobou, and Yasuyuki Yamashita Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and Cyber-Knife. Med. Phys. 31 .7., July 2004, 1980-1986.
17.Williamson JF, Khan FM, Sharma SC: Film dosimetry of megavoltage photon beams: A practical method of isodensity-to-isodose curve conversion. Med Phys 1981;8:94–98.
18.Martina Fuss, Eva Sturtewagen, Carlos DeWagter, Dietmar Georg, Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance Phys. Med. Biol. 2007;52, 4211–4225.
19.P. S. Nizin, ‘‘Phenomenological dose model for therapeutic photon beams: Basic concepts and definitions,’’ Med. Phys. 26, 1999;1893–1900.
20.Oliver Hupea_ and Jens Brunzendorfb_ A novel method of radiochromic film dosimetry using a color scanner Med. Phys. 33 ,1, November 2006; 4805-4894.
21.N. MacDougall, W. Pitchford, and M. Smith, “A systematic review of the precision and accuracy of dose measurements in photon radiotherapy using polymer and Fricke MRI gel dosimetry,” Phys. Med. Biol. 2002;47, R107– R121.
22.J. C. Gore, Y. S. Kang, and R. J. Schulz, “Measurement of Radiation Dose Distribution by Nuclear Magnetic Resonance(NMR)Imaging,” Phys. Med. Biol., 1984;29, 1189-1197.
23.L. E. Olssen, S. Peterson, L. Ahlgern and S. Mattsson, “Ferrous Sulfate Gels for Determination of Absorbed Dose Distributions Using MRI Technique:Basic Studies,” Phys. Med. Biol., 1989;34, 43-52.
24.Y. J. Tseng, W. C. Chu, W. Y. Chung, W. Y. Guo, Y. H. Kao, J. Wang, S.C. Huang, “ The role of dose distribution gradient in the observed ferric ion diffusion time scale in MRI-Fricke-infused gel dosimetry,” Magn. Reson. Imag. 2002; 20, 495-502.
25.Mcjury, M oldham, P. Cosgrove, Radiation dosimetry using polymer gels: methods and applications The British Journal of Radiology, 2000;73, 919-929.
26.M. Maryanski, R. Schulz, G. Ibbott, J. Gatenby, J. Xie, D. Horton, and J. Gore, “Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter,” Phys. Med. Biol. 1994;39, 1437–1455.
27.M. Oldham, M. McJury, I. Baustert, S. Webb, and M. Leach, “Improving calibration accuracy in gel dosimetry,” Phys. Med. Biol. 1998;43, 2709–2720.
28.C. Baldock, M. Lepage, S. Bäck, P. Murry, P. Jayasekera, D. Porter, and T. Kron, “Dose resolution in radiotherapy polymer gel dosimetry: effect of echo spacing in MRI pulse sequence,” Phys. Med. Biol. 2001;46, 449–460.
29.M. Heydarian, P. W. Hoban, and A. H. Beddoe, ‘‘A comparison of dosimetry techniques in stereotactic radiosurgery,’’ Phys. Med. Biol. 1996;41, 93–110.
30.A. Brahme, ‘‘Correction of a measured distribution for the finite extension of the detector,’’ Strahlentherapie 1981;157, 258–259.
31.Duggan DM, Coffey CW: Use of a micro-ionization chamber and an anthropomorphic head phantom in a quality assurance program for stereotactic radiosurgery. Med Phys 1996;23:513–516.
32.Yu C, Luxton G, Apuzzo MLJ, Petrovich Z: TLD measurements of the relative output factors for the Leksell gamma knife. Stereotact Funct Neurosurg 1999;72:50–58.
33.P. D. Higgins, C. H. Sibata, L. Siskind, and J. W. Sohn, ‘‘Deconvolution of detector size effects for small field measurement,’’ Med. Phys. 1995;22, 1663–1666.
34.McLaughlin WL, Soares CG, Sayeg JA, McCullough EC, Kline RW, Wu A, Maitz AH: The use of a radiochromic detector for the determination of stereotactic radiosurgery dose characteristics. Med Phys 1994;21:379–388.
35.Mack A, Scheib SG, Major J, Pazmandi G, Feist H, Czempiel H, Kreiner HJ: Precision dosimetry for narrow photon beams used in radiosurgery: Determination of gamma knife output factors. Med Phys 2002;29:2080–2089.
36.Mcjury, M oldham, P. Cosgrove, Radiation dosimetry using polymer gels: methods and applications The British Journal of Radiology, 2000;73, 919-929.
37.Wu A, Lindner G, Maitz AH, Kalend AM, Lunsford LD, Flickinger JC,Bloomer WD: Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1990;18:941–949.
38.Ma L, Li XA, Yu CX: An efficient method of measuring the 4mm helmet output factor for the gamma knife. Phys Med Biol 2000;45:729–733.
39.E. Pantelis, L. Petrokokkinos, P. Karaiskos and P. Papagiannis, Dosimetric characterization of CyberKnife radiosurgical photon beams using polymer gels. Med. Phys. 2008;35, 2312-2320.
40.Ekberg, L., Holmberg, O. and Wittgren, L. What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiother Oncol. 1998;48:71–77.
41.Engelsman, M., Sharp, G.C. and Bortfeld, T. How much margin reduction is possible through gating or breath hold? Phys Med Biol. 50:477-490, 2005.
42.George, R., Suh, Y.L. and Murphy, M. On the accuracy of a moving average algorithm for target tracking during radiation therapy treatment delivery. Med Phys. 2008;35(6):2356-2365.
43.Murphy, M.J. Tracking moving organs in real time. Semin Radiat Oncol. 2004;14(1):91-100.
44.Ozhasoglu, C., Saw, C.B. and Cheng, H.C. Synchrony-CyberKnife respiratory compensation technology. Medical Dosimetry. 2008;33(2):117-123.
45.Sharp, G.C. Jiang, S. B. and Shimizu, S. Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Phys. Med. Biol. 2004;49:425-440.
46.Shimizu, S., Shirato, H. and Kagei, K. Impact of respiratory movement on the computed tomography images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys. 2000;46:1127-1133.
47.Shimizu, S., Shirato, H. and Ogura, S. Detection of lung tumor movement in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys. 2001;51(2):304-310.
48.Tewaita, D., Zhang, T. and Tome, W. Clinical implementation of target tracking by breathing synchronized delivery. Med Phys. 2006;33(11): 4330-4336.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top