(3.238.235.155) 您好!臺灣時間:2021/05/11 04:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳俊緯
研究生(外文):Chun-Wei Wu
論文名稱:單相串接式換流器之研究
論文名稱(外文):Study of Single-Phase Cascaded Inverters
指導教授:華志強華志強引用關係
指導教授(外文):Chih-Chiang Hua
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:119
中文關鍵詞:串接式換流器預測控制
外文關鍵詞:perdictive controllercascaded inverter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:151
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是以三組全橋式換流器模組發展出單相串接式換流器。論文中的串接式換流器包含了以下三個特色:1)功率開關導通角度運算控制;2)輸入直流電壓源平衡放電控制;3) 輸出電流預測控制。
多階式換流器以合成步階輸出電壓以達到較小的諧波失真。傳統串接式換流器的功率開關導通角度採用傅立葉級數運算以達到低諧波失真的輸出電壓。此運算方式複雜並且不容易由數位控制晶片所實現,特別是當輸入電壓源變動。本篇論文提供了功率開關導通角度的運算方式,以迴授換流器模組的輸入電壓源作為開關導通角度運算的參數,並且以輸出電壓面積整除於參考電壓以附合輸出電壓階數,精準的計算出開關導通角度。最後則是將開關導通角度轉換為開關導通參考電壓。本文所提出的控制方式可達到輸出電壓動態控制並且有效的減少輸出電壓的諧波失真量。
串接式換流器以增加換流器模組數量以達到提高系統的電力容量,或者是因串接式換流器中有一個換流器模組發生故障而且減少換流器模組數量時,一般的控制器是無法適應上述的條件。傳統的方式則是修改控制器以符合換流器模組的數量。本論文提出適應上述條件的控制器,此控制器僅需得知換流器模組數量,同時此控制器可達到平衡釋放輸入直流電壓源的能量(若直流電壓源採用電池)。
本論文也提出了預測電流控制技術應用於串接式換流器。比較於傳統的預測電流控制法,本文具有以下的特色:1) 僅需偵測電感電流,可減少硬體成本及降低電路的複雜(一般傳統方式需偵測輸出電壓及電流); 2) 以變動的取樣技術,有效的避開功率元件切換時所產生的雜訊,以達到強健的電流控制系統。
The objective of this dissertation is to develop single-phase cascaded inverters with three H-bridge inverter modules. The proposed cascade inverter features include: 1) the method of conducting angles; 2) the separate DC voltages discharge balance control and 3) predictive current control.
The multilevel inverter synthesizing the output voltage with step pulses produces output voltages with less harmonic distortion. The conducting angles of switches in the conventional cascaded multilevel inverters are obtained by the use of Fourier series to minimize the harmonic distortion of output voltage. The traditional method is complex and difficult to implement on a single chip, especially when the input voltage sources is variation. This dissertation presents a method which calculates the switching angles by using the input voltage feed-forward of each H-bridge, in which the input voltage is fed into the controller and computed switching angles by the voltage areas of the divided reference voltage according to the output voltage levels of the inverter. Finally, the switching angles are transformed into the switching reference voltages. The proposed control can easily achieve dynamic control of the output voltage and reduce the distortion of inverter output voltage.
The controller for the cascaded inverter can not be used for the inverter if a new H-bridge inverter module is added to the system for increasing the power capacity, or an H-bridge inverter module is disconnected from the system due to its failure. The system controller must be replaced or modified when the number of H-bridge inverter modules is changed. This dissertation proposes a flexible controller, which only requires the number of full bridge inverter modules, thus the proposed control can easily self-adjust to ensure balanced discharging of input dc voltage sources (if the dc voltage sources are batteries).
A current control technique with predictive control method for cascaded inverters is proposed in this dissertation. Compared to the conventional predictive current controllers, the proposed control features: 1) Only the inductor current measurement is required, and it is able to achieve a cost-effective and less complex circuit (the output voltage and current measurements are required for a conventional controller); 2) The proposed variable sampling technique is designed to avoid the switching noise, thus a robust current controlled system can be achieved.
摘要
Abstract
致謝
Contents
List of Tables
List of Figures
List of Symbols
Chapter 1. Introduction
1.1 Background and motivation
1.2 Review of previous work
1.3 Dissertation outline
Chapter 2. Analysis and Design of Cascaded Inverters
2.1 Configuration of single-inverter module
2.2 Step pulses control for cascaded multilevel inverters
2.2.1 7-level cascaded inverter
2.2.2 15-level cascaded inverter
2.2.3 19-level cascaded inverter
2.2.4 27-level cascaded inverter
2.2.5 Comparison results for step pulses control
2.3 PWM control for a cascaded multilevel inverter
2.3.1 Phase disposition (PD) technique
2.3.2 Phase opposition disposition (POD) technique
2.3.3 Alternative phase opposition disposition (APOD) technique
2.3.4 Phase shifted (PS) technique
2.3.5 Comparison results for PWM control
Chapter 3. Control of Low-Distortion 27-Level Cascaded Inverter with Only
Three H-Bridge Inverter Modules
3.1 Calculation of switching angle for traditional cascaded inverters
3.2 Design of multilevel inverter control
3.2.1 Switching reference voltage algorithm
3.2.2 Comparator
3.3 Simulation results
3.4 Experimental results
3.5 Summary
Chapter 4. A Novel DC Voltage Charge Balance Control for Cascaded Inverter
4.1 Principle of multilevel cascaded inverters
4.2 Proposed controller with two auxiliary signals
4.2.1 Auxiliary voltage signal controller
4.2.2 Auxiliary shift signal controller
4.3 Proposed control strategy
4.3.1 Modular controller and dc voltage balance charge control
4.4 Cascaded inverter PWM control
4.5 Simulation and experimental results
4.5.1 Simulation results
4.5.2 Experimental results
4.6 Summary
Chapter 5. A Digital Predictive Current Control with Improved Sampled Inductor
Current 5.1 Traditional predictive current controller
5.2 Proposed predictive current controller
5.2.1 Predictive current control with under-flow sampling
5.2.2 Predictive current control with over-flow sampling
5.3 Simulation and experimental results
5.3.1 Simulation results
5.3.2 Experimental results
5.4 Summary
Chapter 6. Conclusions and Future Research
6.1 Conclusions
6.2 Future Research
References
Publication List
[1]Anshuman Shukla , Arindam Ghosh, and Avinash Joshi, “Improved Multilevel Hysteresis Current Regulation and Capacitor Voltage Balancing Schemes for Flying Capacitor Multilevel Inverter,” IEEE Transactions on Power Electronics, Vol. 23, No. 5, pp.518-529, Mar. 2008.
[2]O. Bouhali, E. M. Berkouk, C. Saudemont, and B. Francois, “A Five Level Diode Clamped Inverter with Self-Stabilization of the DC-link Voltage for Grid Connection of Distributed Generators,” Proceeding of the IEEE Industry Applications Annual Meeting, pp. 947-952, May 2004.
[3]O. Bouhali, B. Francois, E. M. Berkouk and C. Saudemont, “DC Link Capacitor Voltage Balancing in a Three-Phase Diode Clamped Inverter Controlled by a Direct Space Vector of Line-to-Line Voltages,” IEEE Transactions on Power Electronics, Vol. 22, No. 5, pp.1636-1648, Sep. 2007.
[4]A. Nabae and H. Akagi, “A new neutral-point clamped PWM inverter,” IEEE Transactions on Industry Applications, Vol. 17, No. 5, pp. 518-523, Sep. 1981.
[5]J. Pou, R. Pindado, and D. Boroyevich, “Voltage-Balance Limits in Four Level Diode-Clamped Converters with Passive Front Ends,” IEEE Transactions on Power Electronics, Vol. 52, No. 1, pp. 190-196, Feb. 2005.
[6]S. Alepuz, S. Busquets-Monge, J. Bordonau, J. Gago, D. Gonzalez, and J. Balcells, “Interfacing renewable energy sources to the utility grid using a three-level inverter,” IEEE Transactions on Power Electronics, Vol. 53, No. 5, pp.1504-1511, Oct. 2006.
[7]Xiaoming Yuan and Ivo Barbi, “Fundamentals of a New Diode Clamping Multilevel Inverter,” IEEE Transactions on Power Electronics, Vol. 15, No. 4, pp.711-718, July 2000.
[8]L. Zhang and S.J. Watkins, “Capacitor Voltage Balancing in Multilevel Flying Capacitor Inverters by Rule-based Switching Pattern Selection,” IET Power Electrics , pp. 339-347, June 2007.
[9]Jing Huang and Keith A. Corzine, “Extended Operation of Flying Capacitor Multilevel Inverters,” IEEE Transactions on Power Electronics, Vol. 21, No. 1, pp. 140-147, Jan. 2006.
[10]T. Meynard and H. Foch, “Multi-level choppers for high voltage applications,” Eur. Power Electron, Vol. 2, No. 1, pp. 45-50, Mar. 1992.
[11]D.-W. Kang, B.-K. Lee, J.-H. Jeon, T.-J. Kim, and D.-S. Hyun, “A Symmetric Carrier Technique of CPRPWM for Voltage Balance Method of Flying-Capacitor Multilevel Inverter,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 3, pp. 879-888, June 2005.
[12]B.-R. Lin and C.-H.Huang, “Implementation of a Three-Phase Capacitor Clamped Active Power Filter under Unbalanced Condition,” IEEE Transactions on Industrial Electronics, Vol. 53, No. 5, pp. 1621-1630, October 2006.
[13]J. Lai and F. Z. Peng, “Multilevel Converters a New Breed of Power Converters, IEEE Transactions on Industry Applications,” Vol. 32, No. 3, pp. 509-517, May/June 1996.
[14]C. K. Lee, S. Y. Ron Hui, and H. S. Chung, “A 31-level Cascade Inverter for Power Applications,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 3, pp. 613-617, June 2002.
[15]B. P. McGrath, and D. G. Holmes, “Multicarrier PWM Srategies for Multilevel Inverters,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 4, pp. 858-867. August 2002.
[16]J. Rodriguez, L. Moran, J. Pontt, and C. Silva, “A High-performance Vector Control of an 11-level Inverter,” IEEE Transactions on Industrial Electronics, Vol. 50, No. 1, pp. 80-85, Feb. 2003.
[17]J. Rodriguez, L. Moran, and C. Silva, “A Vector Control Technique for Medium-voltage Multilevel Inverters,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 4, pp. 882-888, Aug. 2002.
[18]D. G. Holmes, and B. P. McGrath, “Opportunities for Harmonic Cancellation with Carrier-Based PWM for a Two-level and Multilevel Cascaded Inverters,” IEEE Transactions on Industry Applications, Vol. 37, No. 2, pp. 574-582, March/April 2001.
[19]F. Z. Peng and J. Lai, “Dynamic Performance and Control of a Static VAr Generator using Cascade Multilevel Inverters,” IEEE Transactions on Industry Applications, Vol. 33, No. 3, pp. 748-755, May/June 1997.
[20]D. W. Kang, H. C. Kim, T. J. Kim and D. S. Hyun, “A Simple Method for Acquiring the Conducting Angle in a Multilevel Cascaded Inverter Using Step Pulse Waves,” IEE Proceedings of Electric Power Applications, Vol. 152, No. 1, pp. 103-111, Jan. 2005.
[21]Y. S. Lai and F. S. Shyu, “Topology for Hybrid Multilevel Inverter,” IEE Proceedings of Electric Power Applications, Vol.149, No. 6, pp.449-458, Nov. 2002.
[22]D. W. Kang, Y. H. Lee, B. S. Suh, C. H. Choi, and D. S. Hyun, “An Improved Carrier-Based SVPWM Method Using Leg Voltage Redundancies in Generalized Cascaded Multilevel Inverter Topology,” IEEE Transactions on Power Electronics, Vol. 18, No. 1, pp. 180-187, Jan. 2003.
[23]G. Gateau, T. A. Meynard and H. Foch, “Stacked Multilevel Converter(SMC): properties and design,” Proceedings of the IEEE Annual Power Electronics Specialists Conference, Vol. 3, pp. 1583-1588, June 2001.
[24]G. Gateau, T. A. Meynard and H. Foch, “Stacked Multicell Converter (SMC): Control and Natural Balancing. Proceedings of the IEEE Annual Power Electronics Specialists Conference, Vol. 2, pp.689-694, Jun 2002.
[25]M. D. Manjrekar, P. K. Steimer, and T. A. Lipo, “Hybrid Multilevel Power Conversion System: A Competitive Solution for High-Power Applications,” IEEE Transactions on Industry Applications, Vol. 36, pp. 834-841, April 2000.
[26]C. K. Lee, J. S. K. Leung, S. Y .R. Hui, and H. S. H. Chung, “Circuit level comparison of STATCOM technologies,” IEEE Transactions on Power Electronics, Vol. 18, pp. 1084-1092, Feb. 2000.
[27]A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple Analytical and Graphical Methods for Carrier-Based PWM-VSI Drives,” IEEE Transactions on Power Electronics, Vol. 14, No. 1, pp. 49-61, Jan. 1999.
[28]K. Zhou and D.Wang, “Relationship between Space-vector Modulation and Three-phase Carrier-based PWM: A Comprehensive Analysis,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 1, pp. 186-196, Feb. 2002.
[29]F. Wang, “Sine-triangle vs. Space Vector Modulation for Three-level PWM Voltage Source Inverters,” Proceedings of the IEEE Applied Power Electronics Conference and Exposition, Vol. 4, pp. 2482-2488, Mar.2000.
[30]Y. Lee, D. Kim, and D. Hyun, “Carrier Based SVPWM Method for Multilevel System with Reduced HDF,” Proceedings of the IEEE Industry Applications Annual Meeting, pp. 1996-2003, Oct.2000.
[31]B. P. McGrath, D. G. Holmes, and T. Lipo, “Optimized Space Vector Switching Sequences for Multilevel Inverters,” IEEE Transactions on Power Electronics, Vol. 18, No. 6, pp. 1293-1301, Nov. 2003.
[32]B. P. McGrath, D. G. Holmes, and T. Meynard, “Reduced PWM Harmonic Distortion for Multilevel Inverters Operating over a Wide Modulation Range,” IEEE Transactions on Power Electronics, Vol. 21, No. 4, pp. 941-949, Jul. 2006.
[33]Yu Liu, Hoon Hong, and Alex Q. Huang, “Real-Time Calculation of Switching Angles Minimizing THD for Multilevel Inverters With Step Modulation,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 2, pp. 285-293, Feb. 2009.
[34]Leon M. Tolbert, Fang Zheng Peng, Tim Cunnyngham and John N. Chiasson, “Charge Balance Control Schemes for Cascade Multilevel Converter in Hybrid Electric Venicles,” IEEE Transactions on Power Electronics, Vol. 49, No. 5, pp. 1058-1064, October 2002.
[35]Gerardo Ceglia, Victor Guzman, Carlos Sanchez, Fernando Ibanez, Julio Walter and Maria Isabel Gimenez, “A New Simplified Multilevel Inverter Topology for DC-AC Converter,” IEEE Transactions on Power Electronics, Vol. 21, No. 5, pp. 1311-1319, Sept. 2006.
[36]Poh Chiang Loh, Donald Grahame Holemes and Thomas A. Lipo, “Implementation and Control of Distributed PWM Cascaded Multilevel Inverters With Minimal Harmonic Distortion and Common-Mode Voltage,” IEEE Transactions on Power Electronics, Vol. 20, No. 1, pp. 90-99, July 2005.
[37]D. W. Kang and D.S. Hyun, “Simple Harmonic Analysis Method for Multi-carrier PWM Techniques using Output Phase Voltage in Multi-level Inverter,” IEE Proceedings of Electric Power Applications, Vol.152, No. 2, pp.157-165, Mar. 2005.
[38]Poh Chiang Loh, Donald Grahame Holemes, Yusuke Fukuta and Thomas A. Lipo, “Reduced Common-Mode Modulation Strategies for Cascaded Multilevel Inverters,”IEEE Transactions on Industrial Electronics, Vol. 39, No. 5, pp. 1386-1395, Sept. 2003.
[39]Walter Stefanutti and Paolo Mattavelli, “Fully Digital Hysteresis Modulation With Switching-Time Prediction” IEEE Transactions on Industry Applications, Vol. 42, No. 3, pp. 763-769, May/June 2006.
[40]P. C. Loh, G.H. Bode and P. C. Tan, “Modular Hysteresis Current Control of Hybrid Multilevel Inverter,” IEE Proceedings of Electric Power Applications, Vol. 152, No. 1, pp. 1-8, Jan. 2005.
[41]B. J. Kang and C. M. Liaw, “Robust Hysteresis Current-Controlled PWM scheme with Fixed Switching Frequency,” IEE Proceedings of Electric Power Applications, Vol. 148, No. 6, pp. 503-512, Nov. 2001.
[42]Poh Chiang Loh, Donald Grahame Holemes and Thomas A. Lipo, “A Time-Based Double-Band Hysteresis Current Regulation Strategy for Single-Phase Multilevel Inverters,” IEEE Transactions on Industry Applications, Vol. 39, No. 3, pp. 833-892, May/June 2003.
[43]P. Wipasuramonton, Z. Q. Zhu and David Howe, “Predictive Current Control With Current-Error Correction for PM Brushless AC Drives,” IEEE Transactions on Industry Applications, Vol. 42, No. 4, pp. 1071-1079, July/Aug. 2006.
[44]Jose Rodriguez, Jorge Pontt, Cesar A. Silva, Pabo Correa, Pablo Lezana, Patricio Cortes and Ulrich Ammann, “Predictive Current Control of a Voltage Source Inverter,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 1, pp. 495-503, Feb. 2007.
[45]Seung-Gi Jeong and Myung-Ho Woo, “DSP-Based Active Power Filter with Predictive Current Control,” IEEE Transactions on Industrial Electronics, Vol. 44, no. 3, pp. 329-336, June 1997.
[46]J. Holtz and S. Stadtfeld, “A Predictive Controller for the Stator Current Vector of AC Machines Fed from a Switched Voltage Sources,” Proceeding of the IEEE Industry Applications Annual Meeting, pp. 1665-1675, 1983.
[47]D. G. Holmes and D. A. Martin, “Implementation of a Direct Digital Predictive Current Controller for Single and Three Phase Voltage Source Inverter”, Proceeding of the IEEE Industry Applications Annual Meeting, pp. 906-913, April 1996.
[48]H. Le-Huy, K. Slimani, and P. Viarouge, “Analysis and Implementation of a Real-Time Predictive Current Controller for Permanent-magnet Synchronous Servo Drives,” IEEE Transactions on Industrial Electronics, Vol. 41, No. 1, pp. 110-117, Feb. 1994.
[49]Hossein Madadi Kojabadi, BinYu, Idris A. Gadoura, Liuchen Chang and Mohsen Ghribi, “A Novel DSP-Based Current-Controlled PWM Strategy for Single Phase Grid Connected Inverters,” IEEE Transactions on Industrial Electronics, Vol. 21, No. 4, pp. 985-993, July 2006.
[50]K. H. Kim and M. J. Youn, “A Simple and Robust Digital Current Control Technique of a PM Synchronous Motor using Time Delay Control Approach,” IEEE Transactions on Industrial Electronics, Vol. 16, No. 1, pp. 72-82, Jan. 2001.
[51]S. Daher, J. Schmid, and F. Antunes, “Multilevel Inverter Topologies for Stand-Alone PV Systems,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, pp. 2703-2712, July 2008.
[52]P. Zanchetta, D. Gerry, V. Monopoli, J. C. Clare, and P. W. Wheeler, “Predictive Current Control for Multilevel Active Rectifiers with Reduced Switching Frequency,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 1, pp. 163-172, Jan. 2008.
[53]Q. Zeng and L. Chang, “An Advanced SVPWM-Based Predictive Current Controller for Three-Phase Inverters in Distributed Generation Systems,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 3, pp. 1235-1246, Mar. 2008.
[54]R. Gupta, A. Ghosh, and A. Joshi, “Switching Characterization of Cascaded Multilevel-Inverter-Controlled Systems,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 3, pp. 1047-1058, Mar. 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔